• Title/Summary/Keyword: Water Splitting

Search Result 349, Processing Time 0.032 seconds

Numerical Simulation of Free Surface Flows Using the Roe's Flux-difference Splitting Scheme (Roe의 Flux-difference Splitting 기법을 이용한 자유표면 유동 모사)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • A code is developed to simulate incompressible free surface flows using the Roe's flux-difference splitting scheme. An interface of two fluids is considered as a moving contact discontinuity. The continuities of pressure and normal velocity across the interface are enforced by the conservation law in the integral sense. The fluxes are computed using the Roe's flux-difference splitting scheme for two incompressible fluids. The interface can be identified based on the computed density distribution. However, no additional treatment is required along the interface during the whole computations. Complicated time evolution of the interface including topological change can be captured without any difficulties. The developed code is applied to simulate the Rayleigh-Taylor instability of two incompressible fluids in the density ratio of 7.2:1 and the broken dam problem of water-air. The present results are compared with other available results and good agreements are achieved for the both cases.

Development of Hydraulic Rock Splitting Technique for Rock Excavation (암반 굴착을 위한 수압암반절개 기술 개발)

  • Park, Jongoh;Lee, Dal-Heui
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.353-360
    • /
    • 2016
  • Tests of hydraulic rock splitting were conducted using double packer at the 1, 2 free surface in the limestone mining and granodiorite Suksan area, respectively. The method of hydraulic rock splitting was applying hydraulic power in the interval layer using double packer. As a result of tests, a crack occurred. At about 6.5 MPa and 13 MPa, a crack occurred in 2 free surface. Any crack did not occur in the 1 free surface. Rather, used 1 double packer was broken in the 1 free surface. Also, it was confirmed that the water pressure of the interval increased through the existing crack and the new crack in the test areas.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • Kim, Ji-Min;Yang, U-Seok;O, Yun-Jeong;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Feasibility Study of IAQ Enhancement by Visible Light Photocatalyst (가시광 응답형 광촉매 제조와 이를 활용한 실내공기환경 개선 적용 타당성 조사)

  • Lee, Tai-Kyu;Yoon, Woo-Sug;Kim, Dong-Hyung;Hwang, Chul-Soon;Lim, Ji-Hun;Yoon, Jung-Ho;Kim, Young-mi
    • KIEAE Journal
    • /
    • v.4 no.2
    • /
    • pp.37-40
    • /
    • 2004
  • New visible photocatalyst(Nanovis$^{(R)}$) has been synthesized to overcome the barrier of limitation of UV light utilization of current $TiO_2$ photocatalyst. It was found that red shift of absorption spectrum to 550nm was achieved. Its physical properties were characterized by XRD, BET and TEM. It is also observed that Nanovis$^{(R)}$ has a photocatalytic activity for photodegradation of Trichloroethylene under visible light irradiation. V,VII group doped into substitutional sites of $TiO_2$ has proven to be indispensable for band-gap narrowing and photocatalytic activity. These test results lead us to conclude that Nanovis$^{(R)}$ can be used for IAQ improvemen and for photocatalytic water splitting to hydrogen.

Hydrogen Formation by Photo-splitting of Water on Ilmenite (일메나이트 상에서 물의 광분해에 의한 수소의 생성)

  • Choi, Im-Kyu;Ha, Baik-Hyun
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 1988
  • Thermally treated Korean ilmenite was characterized and used for water splitting to obtain hydrogen by photo-catalytic reaction. Experiments on specific surface area, X-ray diffraction and EDS showed that the formation of FeO, $Fe_2O_3$ and $TiO_2$ ilmenite crystal surface increased the specific surface area with maximum value, phase change of $TiO_2$ at $600^{\circ}C$ and hetrogeneity. The hydrogen evolved in caustic soda solution on these ilmenites indicated that there was a maximum yield point at about $600^{\circ}C$. This point was explained with the change of the surface area due to sintering of newly formed FeO, $Fe_2O_3$ and $TiO_2$, as well as crystal phase change of anatase to rutile at $600^{\circ}C$. Produced hydrogen increased also as the concentration of caustic soda, but become constant at the near 1N solution.

  • PDF

The Preparation Characteristics of Hydrogen Permselective Membrane in IS Process of Nuclear Hydrogen Production (원자력 수소제조 IS 공정의 수소분리막 제조 특성)

  • Son, Hyo-Seok;Choe, Ho-Sang;Kim, Jeong-Min;Hwang, Gap-Jin;Park, Ju-Sik;Bae, Gi-Gwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.119-123
    • /
    • 2005
  • The thermochemical splitting of water has been proposed as a clean method for hydrogen production. The IS process is one of the thermochemical water splitting processes using iodine and sulfur as reaction agents. HI decomposition procedure to obtain hydrogen is one of the key operations in the process, because equilibrium conversion of HI is low (22% at $450^{\circ}C$). The silica membranes prepared by CVD. method were applied to the decomposition reaction of HI vapor. The permeation characteristics of hydrogen and nitrogen belong to the Knudsen flow pattern.

  • PDF

Preparation of WO3 by using sol-gel method for photoelectrode and its application for PEC cell (물분해로부터 수소 제조를 위한 광촉매용 텅스텐 산화물 박막 제조)

  • Hong, Eun-Mi;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.101-101
    • /
    • 2015
  • Photoelectrochemical water splitting is considered as a promising method of transforming solar energy into chemical energy stored in the type of hydrogen. An n-type $WO_3$ semiconductor is one of the most promising photoanodes for hydrogen production from water splitting. Films annealed at lower temperatures consisted of amorphous, whereas films annealed above $500^{\circ}C$ comprised solely of monoclinic $WO_3$. In this study, we observed photoactivity of $WO_3$ as increasing thickness of $WO_3$. And it shows good photoacivity as thickness increases. Also we tried to improve photoactivity through surface modification and bulk modification by using hydrogen treatment and conducting polymer. The photocurrent was measured in potentiostatic method with the three electrode system. A Pt wire and Ag / AgCl electrode were used as the counter electrode and the reference electrode, respectively. photocurrent-time (I-T) curve was measured at a bias potential of 0.79 V.

  • PDF

Rapid Fabrication of Cu/Cu2O/CuO Photoelectrodes by Rapid Thermal Annealing Technique for Efficient Water Splitting Application

  • Lee, Minjeong;Bae, Hyojung;Rho, Hokyun;Burungale, Vishal;Mane, Pratik;Seong, Chaewon;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.39-45
    • /
    • 2020
  • The Cu/Cu2O/CuO photoelectrode has been successfully fabricated by Rapid Thermal Annealing technique. The structural characterization of fabricated photoelectrode was performed using X-Ray diffraction, while elemental composition of the prepared material has been checked with X-Ray Photoelectron Spectroscopy. The synthesis parameters are optimized on the basis of photoelectrochemical performance. The best photoelectrochemical performance has been observed for the Cu/Cu2O/CuO photoelectrode fabricated at 550 ℃ oxidation temperature and oxidation time of 50 seconds with highest photocurrent density of -3 mA/㎠ at -0.13 V vs. RHE.