• Title/Summary/Keyword: Water Sensor

Search Result 1,236, Processing Time 0.027 seconds

A Study on 3-Dimensional Near-Field Source Localization Using Interference Pattern Matching in Shallow Water Environments (천해에서 간섭패턴 정합을 이용한 근거리 음원의 3차원 위치추정 기법연구)

  • Kim, Se-Young;Chun, Seung-Yong;Son, Yoon-Jun;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2009
  • In this paper, we propose a 3-D geometric localization method for near-field broadband source in shallow water environments. According to the waveguide invariant theory, slope of the interference pattern which is seen in a sensor spectrogram directly proportional to a range of the source. The relative ratio of the range between source and sensors was estimated by matching of two interference patterns in spectrogram. Then this ratio is applied to the Apollonius's circle which shows the locus of a source whose range ratio from two sensors is constant. Two Apollonius's circles from three sensors make the intersection point that means the horizontal range and the azimuth angle of the source. And this intersection point is constant with source depth. Therefore the source depth can be estimated using 3-D hyperboloid equation whose range difference from two sensors is constant. To evaluate a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program and analysis of localization error is demonstrated. From simulation results, error estimate for range and depth is described within 50 m and 15 m respectively.

Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image (고해상도 위성영상을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Choe, Eun-Young;Lee, Jae-Woon;Lee, Jae-Kwan
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.613-623
    • /
    • 2011
  • This study assessed the feasibility to apply Two-band and Three-band reflectance models for chlorophyll-a estimation in turbid productive waters whose scale is smaller and narrower than ocean using a high spatial resolution image. Those band ratio models were successfully applied to analyzing chlorophyll-a concentrations of ocean or coastal water using Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS), etc. Two-band and Three-band models based on band ratio such as Red and NIR band were generally used for the Chl-a in turbid waters. Two-band modes using Red and NIR bands of RapidEye image showed no significant results with $R^2$ 0.38. To enhance a band ratio between absorption and reflection peak, We used red-edge band(710 nm) of RapidEye image for Twoband and Three-band models. Red-RE Two-band and Red-RE-NIR Three-band reflectance model (with cubic equation) for the RapidEye image provided significance performances with $R^2$ 0.66 and 0.73, respectively. Their performance showed the 'Approximate Prediction' with RPD, 1.39 and 1.29 and RMSE, 24.8, 22.4, respectively. Another three-band model with quadratic equation showed similar performances to Red-RE two-band model. The findings in this study demonstrated that Two-band and Three-band reflectance models using a red-edge band can approximately estimate chlorophyll-a concentrations in a turbid river water using high-resolution satellite image. In the distribution map of estimated Chl-a concentrations, three-band model with cubic equation showed lower values than twoband model. In the further works, quantification and correction of spectral interferences caused by suspended sediments and colored dissolved organic matters will improve the accuracy of chlorophyll-a estimation in turbid waters.

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

Irrigation Control for Improving Irrigation Efficiency in Coir Substrate Hydroponic System (코이어 배지 수경재배에서 관수효율 향상을 위한 급액 제어)

  • Yoo, Hyung-Joo;Choi, Eun-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 2015
  • The objectives of this study were to determine optimal length of off-time between irrigation cycles to improve irrigation efficiency using a frequency domain reflectometry (FDR) sensor-automated irrigation (FAI) system for tomato (Solanum lycopersicum L.) cultivation aimed at minimizing effluent from coir substrate hydroponics. For treatments, the 5-minute off-time length between 3-minute run-times (defined as 3R5F), 10-minute off-time length between 3-minute run-times (defined as 3R10F), or 15-minute off-time length between 5-minute run-times (defined as 5R15F) were set. During the 3-minute or 5-minute run-time, a 60mL or 80mL of nutrient solution was irrigated to each plant, respectively. Until 62 days after transplant (DAT) during the autumn to winter cultivation, daily irrigation volume was in the order of 3R5F (858mL) > 5R15F (409mL) > 3R10F (306mL) treatment, and daily drainage ratio was in the order of 3R5F (44%) > 5R15F (23%) > 3R10F (14%). Between 63 and 102 DAT, daily irrigated volume was in the order of 5R15F (888mL) > 3R5F (695mL) > 3R10F (524mL) with the highest drainage ratio, 19% (${\pm}2.6$), at the 5R15F treatment. During the spring to summer cultivation, daily irrigation volume and drainage ratio per plant was higher in the 3R5F treatment than that of the 3R10F treatment. For both cultivations, a higher water use efficiency (WUE) was observed under the 3R10F treatment. Integrated all the data suggest that the optimal off-time length is 10 minutes.

A Respiration Rate Measurement of Fresh Fruits and Vegetables with a Corrected Pressure Variation Method (수정된 압력변위법을 이용한 과채류 호흡속도 측정)

  • Lee, Hyun-Dong;Chung, Hun-Sik;Kang, Jun-Soo;Chung, Shin-Kyo;Choi, Jong-Uck
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1119-1124
    • /
    • 1997
  • This study was carried out for improvement and correction of the traditional pressure variation method (PVM) in the respiration rate measurements of fresh fruits and vegetables using a microcomputer system and a differential pressure sensor. Water vapor pressure in the container was calculated by equations for psychrometric calculations. At the beginning of experimental period water vapor pressure in the container was increased and maintained constantly in the most experimental period, but was decreased dramatically after $CO_2$ scrubbing. The percentages of water vapor pressure on total differential pressure were $33{\sim}46%$ at $1^{\circ}C$, $23{\sim}45%$ at $11^{circ}C$ and $35{\sim}53%$ at $21^{\circ}C$. The differences between the respiration rates determined by gas chromatography and corrected pressure variation method (CPVM) were $0.2{\sim}0.3\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $0.2{\sim}2.9\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and 1.0{\sim}9.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, while those between gas chromatography and normal pressure variation method (PVM) were $0.8{\sim}1.2\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $3.9{\sim}11.0\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and $8.0{\sim}32.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, respectively. The differences of the respiration rates with CPVM were smaller than those with PVM. CPVM, therefore, were more exact and convenient method than PVM in the measurement of respiration rate of fresh produce.

  • PDF

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

Change in Yield and Quality Characteristics of Rice by Drought Treatment Time during the Seedling Stage (벼 이앙 직후 유묘기 한발 피해시기에 따른 수량 및 미질 특성 변화)

  • Jo, Sumin;Cho, Jun-Hyeon;Lee, Ji-Yoon;Kwon, Young-Ho;Kang, Ju-Won;Lee, Sais-Beul;Kim, Tae-Heon;Lee, Jong-Hee;Park, Dong-Soo;Lee, Jeom-Sig;Ko, Jong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.344-352
    • /
    • 2019
  • Drought stress caused by global climate change is a serious problem for rice cultivation. Increasingly frequent abnormal weather occurrences could include severe drought, which could cause water stress to rice during the seedling stage. This experiment was conducted to clarify the effects of drought during the seedling period on yield and quality of rice. Drought conditions were created in a rain shelter house facility. The drought treatment was conducted at 3, 10, and 20 days after transplanting. Soil water content was measured by a soil moisture sensor during the whole growth stage. In this study, we have chosen 3 rice cultivars which are widely cultivated in Korea: 'Haedamssal' (Early maturing), 'Samkwang' (Medium maturing), and 'Saenuri' (Mid-late maturing). The decrease in yield due to drought treatment was most severe 3 days after transplanting because of the decrease in the number of effective tillers. The decrease in grain quality due to drought treatment was also most severe 3 days after transplanting because of the increased protein content and hardness of the grains. The cultivar 'Haedamssal' was the most severely damaged by water stress, resulting in about a 30% yield loss. Drought conditions diminished the early vigorous growth period and days to heading in early-maturing cultivars. The results show that drought stress affects yield components immediately after transplanting, which is a decisive factor in reducing yield and grain quality. This study can be used as basic data to calculate damage compensation for drought damage on actual rice farms.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.