DOI QR코드

DOI QR Code

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula

한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인

  • Kim, Hee-Young (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education, Research Institute of Oceanography, Seoul National University) ;
  • Kwak, Byeong-Dae (Department of Science Education, Seoul National University) ;
  • Joo, Hui-Tae (National Institute of Fisheries Science) ;
  • Lee, Joon-Soo (National Institute of Fisheries Science)
  • 김희영 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • 곽병대 (서울대학교 과학교육과) ;
  • 주희태 (국립수산과학원) ;
  • 이준수 (국립수산과학원)
  • Received : 2022.10.16
  • Accepted : 2022.10.27
  • Published : 2022.10.31

Abstract

Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

해수면온도는 해양-대기의 현상을 이해하고 기후변화를 예측하기 위해 사용되는 중요한 변수이다. 마이크로파 영역의 인공위성 원격탐사는 구름과 강수와 같은 기상현상 위성 관측 측기의 경로에 존재하더라도 해수면온도 획득을 가능하게 한다. 따라서 마이크로파 해수면온도의 높은 활용도를 고려하면 위성 해수면온도를 정확도를 지속적으로 검증하고 오차 특성을 분석할 필요가 있다. 본 연구에서는 2014년 3월부터 2021년 12월까지 약 8년 동안 Global Precipitation Measurement (GPM)/GPM Microwave Imager (GMI) 마이크로파 해수면온도의 정확도를 표층 뜰개 부이 수온 자료를 사용하여 검증하였다. GMI 해수면온도는 실측 해수면온도에 비해 0.09 K의 편차와 0.97 K의 평균 제곱근 오차를 보였고, 이는 기존 연구 결과에 비해 다소 높게 나타났다. 이외에도 GMI 해수면 온도의 오차 특성은 위도, 연안과의 거리, 해상풍 및 수증기량과 같은 환경적 요인과 관련성이 있다. 오차는 육지에서 300 km 이내의 거리에서 해안 지역에 가까운 지역과 고위도 지역에서 증가하는 경향이 있다. 또한 낮에는 약한 풍속(<6 m s-1), 밤에는 강한 풍속(>10 m s-1) 범위에서 상대적으로 높은 오차가 나타났다. 대기 수증기는 30 mm 미만의 매우 낮은 범위 또는 60 mm보다 큰 매우 높은 범위에서 높은 해수면온도 차이에 기여했다. 이러한 오차들은 저수온에서 GMI 자료의 정확도가 떨어지는 기존 연구와 일치하며, 연안으로부터의 거리, 풍속, 수증기량에 의한 오차의 경우 육지와 해양의 방사율 차이 및 바람에 의한 해수면 거칠기 변화, 수증기의 마이크로파 대기 흡수에서 기인하는 것으로 추정된다. 이는 한반도 주변해에서 마이크로파 위성 계산 SST를 보다 광범위하게 활용하기 위해서는 GMI 해수면온도 오차의 특성에 대한 이해가 필요함을 시사한다.

Keywords

Acknowledgement

이 연구는 국립수산과학원 한국근해 해양변동 모니터링 및 생태계 특성연구(R2022055) 지원을 받아 수행되었습니다. 해양관측 자료 분석은 과학기술정보통신부 한국연구재단의 일부 지원을 받아 수행된 연구입니다(No. 2020R1A2C2009464).

References

  1. Bernstein, R. L, 1982, Sea surface temperature mapping with the SEASAT microwave radiometer. Journal of Geophysical Research: Oceans, 87(C10), 7865-7872. https://doi.org/10.1029/JC087iC10p07865
  2. Brasnett, B., and Colan, D. S, 2016, Assimilating retrievals of sea surface temperature from VIIRS and AMSR2. Journal of Atmospheric and Oceanic Technology, 33(2), 361-375. https://doi.org/10.1175/JTECH-D-15-0093.1
  3. Castro, S. L., Emery, W. J., and Wick, G. A, 2005, Accuracy improvement in an infrared satellite skin sea surface temperature product. In Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05, Vol. 4, pp. 2617-2620, IEEE.
  4. Dong, S., Gille, S. T., Sprintall, J., and Gentemann, C, 2006, Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. Journal of Geophysical Research: Oceans, 111(C4).
  5. Donlon, C., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E., Arino, O., ... and Rayner, N, 2007, The global ocean data assimilation experiment highresolution sea surface temperature pilot project. Bulletin of the American Meteorological Society, 88(8), 1197-1214. https://doi.org/10.1175/BAMS-88-8-1197
  6. Donlon, C., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E., Arino, O., ... and Rayner, N., 2007, The global ocean data assimilation experiment highresolution sea surface temperature pilot project. Bulletin of the American Meteorological Society, 88(8), 1197-1214. https://doi.org/10.1175/BAMS-88-8-1197
  7. Draper, D. W., Newell, D. A., Wentz, F. J., Krimchansky, S., and Skofronick-Jackson, G. M, 2015, The global precipitation measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7), 3452-3462. https://doi.org/10.1109/JSTARS.2015.2403303
  8. Emery, W. J., Castro, S., Wick, G. A., Schluessel, P., and Donlon, C, 2001, Estimating sea surface temperature from infrared satellite and in situ temperature data. Bulletin of the American Meteorological Society, 82(12), 2773-2786. https://doi.org/10.1175/1520-0477(2001)082<2773:ESSTFI>2.3.CO;2
  9. Frouin, R. J., Franz, B. A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns, B., ... and Zhai, P. W, 2019, Atmospheric correction of satellite ocean-color imagery during the PACE era.Frontiers in earth science, 7, 145. https://doi.org/10.3389/feart.2019.00145
  10. Gentemann, C. L, 2014, Three way validation of MODIS and AMSR-E sea surface temperatures. Journal of Geophysical Research: Oceans, 119(4), 2583-2598. https://doi.org/10.1002/2013JC009716
  11. Gentemann, C. L., and Hilburn, K. A, 2015, In situ validation of sea surface temperatures from the GCOM-W 1 AMSR 2 RSS calibrated brightness temperatures. Journal of Geophysical Research: Oceans, 120(5), 3567-3585. https://doi.org/10.1002/2014JC010574
  12. Gentemann, C. L., and Wentz, F. J, 2001, July, Satellite microwave SST: Accuracy, comparisons to AVHRR and Reynolds SST, and measurement of diurnal thermocline variability. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Vol. 1), pp. 246-248, IEEE.
  13. Gentemann, C. L., Wentz, F. J., Mears, C. A., and Smith, D. K, 2004, In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. Journal of Geophysical Research: Oceans, 109(C4).
  14. Hosoda, K, 2010, A review of satellite-based microwave observations of sea surface temperatures. Journal of oceanography, 66(4), 439-473. https://doi.org/10.1007/s10872-010-0039-3
  15. Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., ... and Spencer, R. W, 2003, The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 184-194. https://doi.org/10.1109/TGRS.2002.808331
  16. Kim, H. Y., Park, K., Chung, S. R., Baek, S. K., Lee, B. I., Shin, I. C., ... and Jung, W. C, 2018, Validation of Sea Surface Temperature (SST) from satellite passive microwave sensor (GPM/GMI) and causes of SST errors in the Northwest Pacific. Korean Journal of Remote Sensing, 34(1), 1-15. https://doi.org/10.7780/KJRS.2018.34.1.1
  17. Maeda, T., and Taniguchi, Y, 2013, Descriptions of GCOM-W1 AMSR2 level 1R and level 2 algorithms. Japan Aerospace Exploration Agency Earth Observation Research Center: Ibaraki, Japan.
  18. Monzikova, A. K., Kudryavtsev, V. N., Reul, N., and Chapron, B, 2017, On the upper ocean response to tropical cyclones: Satellite microwave observation. In 2017 Progress in Electromagnetics Research SymposiumFall (PIERS-FALL) pp. 2437-2444, IEEE.
  19. Moon, H. T., Choi, H. C., Jang. S. T., Kim. S. J., Lee. H. J. and Park. J. J., 2012, Development of marine environmental Response System around Nuclear Power Plant on the East Sea coast. The Society of Naval Architects of Korea, 187-187.
  20. O'Carroll, A. G., Watts, J. G., Horrocks, L. A., Saunders, R. W., and Rayner, N. A, 2006, Validation of the AATSR meteo product sea surface temperature. Journal of Atmospheric and Oceanic Technology, 23(5), 711-726. https://doi.org/10.1175/JTECH1876.1
  21. Park, K., Lee, E. Y., Chung, S. R., and Sohn, E. H, 2011, Accuracy assessment of sea surface temperature from NOAA/AVHRR data in the seas around Korea and error characteristics. Korean Journal of Remote Sensing, 27(6), 663-675. https://doi.org/10.7780/KJRS.2011.27.6.663
  22. Reverdin, G., Morisset, S., Bellenger, H., Boutin, J., Martin, N., Blouch, P., and Ward, B., 2013, Near-sea surface temperature stratification from SVP drifters. Journal of Atmospheric and Oceanic Technology, 30(8), 1867-1883. https://doi.org/10.1175/JTECH-D-12-00182.1
  23. Ricciardulli, L., and Wentz, F. J, 2004, Uncertainties in sea surface temperature retrievals from space: Comparison of microwave and infrared observations from TRMM. Journal of Geophysical Research: Oceans, 109(C12).
  24. Shibata, A, 1999, SST observation by TRMM microwave imager aboard Tropical Rainfall Measuring Mission. Umi no Kenkyu, 8, 135-139.
  25. Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., ... and Wilheit, T, 2017, The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98(8), 1679-1695. https://doi.org/10.1175/BAMS-D-15-00306.1
  26. Stammer, D., Wentz, F., and Gentemann, C, 2003, Validation of microwave sea surface temperature measurements for climate purposes. Journal of Climate, 16(1), 73-87. https://doi.org/10.1175/1520-0442(2003)016<0073:VOMSST>2.0.CO;2
  27. Wentz, F. J., and Meissner, T, 2016, Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100GHz derived from spaceborne radiometer observations. Radio Science, 51(5), 381-391. https://doi.org/10.1002/2015RS005858
  28. Wentz, F. J., Gentemann, C., Smith, D., and Chelton, D, 2000, Satellite measurements of sea surface temperature through clouds. Science, 288(5467), 847-850. https://doi.org/10.1126/science.288.5467.847
  29. Wieringa, J, 1986, Roughness-dependent geographical interpolation of surface wind speed averages.Quarterly Journal of the Royal Meteorological Society, 112(473), 867-889. https://doi.org/10.1002/qj.49711247316
  30. Wilheit, T. T., Greaves, J. R., Gatlin, J. A., Han, D., Krupp, B. M., Milman, A. S., and Chang, E. S, 1984, Retrieval of ocean surface parameters from the Scanning Multifrequency Microwave Radiometer (SMMR) on the Nimbus-7 satellite. IEEE transactions on geoscience and remote sensing, (2), 133-143.