• Title/Summary/Keyword: Water Resources Information

Search Result 1,345, Processing Time 0.032 seconds

Comparison and Evaluation on DEM Error by the Resolution of Airborne Laser Scanning Data (항공레이저 측량 자료의 해상도에 따른 DEM 오차 비교평가 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Chae, Hyo-Seok;Shin, Young-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.33-42
    • /
    • 2003
  • As airborne laser scanning technique is developed with high vertical accuracy recently, there come many studies on DEM(digital elevation model creation, building extraction, flood risk mapping and 3D virtual city modeling. This study applied point comparative method, contour comparative method and digital map with scale 1/5,000 to calculate RMSE of DEM in according to resolution that was constructed using rawdata being acquired by airborne laser scanning. As a result, point comparative method showed lower DEM standard error than contour comparative method, it is a reason that contour comparative method was not carried out detailed grid calculation for point comparative method. Also, digital map with scale 1/5,000 showed higher DEM standard error than point comparative method and contour comparative method in below 25.4m that is average horizontal distance among contour line, and showed similar result with contour comparative method in over 25.4m.

  • PDF

A Study on the Water Resources Geographical Information System Based on Network Component (Network 컴포넌트 기반의 수자원지리정보시스템에 관한 연구)

  • Kim, Kyung Tak;Kim, Joo Hun;Choi, Yun Seok;Park, Dong Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.122-134
    • /
    • 2003
  • In recent, different kinds of nationwide thematic map have been developed based on NGIS, and each related research field has tried to develop GIS by utilizing this map. Also, Many researches on the geographic information data model has been conducted to improve the compatibility of developed system. The developed system in water resource field should reflect the dynamic characteristics of river flow. Because it should be considered from the design of data model, this study suggests the datamodel for designing geographical information database on water resources which is possible to linear reference capacity based on stream network. In order to examine the applicability of the suggested model, network component based system has developed. Finally, the river network based system shows the superiority in terms of its applicability comparing with other system.

  • PDF

Development of Rainfall-Runoff forecasting System (유역 유출 예측 시스템 개발)

  • Hwang, Man Ha;Maeng, Sung Jin;Ko, Ick Hwan;Ryoo, So Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

Development of a Standard Vector Data Model for Interoperability of River-Geospatial Information (하천공간정보의 상호운용성을 위한 표준벡터데이터 모델 개발)

  • Shin, Hyung-Jin;Chae, Hyo-Sok;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.44-58
    • /
    • 2014
  • In this study, a standard vector data model was developed for interoperability of river-geospatial information and for verification purpose the applicability of the standard vector model was evaluated using a model to RIMGIS vector data at Changnyeong-Hapcheon & Gangjung-Goryeong irrigation watershed. The standards from ISO and OGC were analyzed and the river geospatial data model standard was established by applying the standards. The ERD was designed based on the analysis information on data characteristics and relationship. The verification of RIMGIS vector data included points, lines and polygon to develope GDM was carried out by comparing with the data by layer. This conducting comparison of basic spatial data and attribute data to each record and spatial information vertex. The error in the process of conversion was 0 %, indicating no problem with model. Our Geospatial Data Model presented in this study provides a new and consistent format for the storage and retrieval of river geospatial data from connected database. It is designed to facilitators integrated analysis of large data sets collected by multiple institutes.

Flood Forecasting and Utilization of Radar-Raingauge in Japan

  • Kazumasa, Ito;Shigeki, Sakakima;Takuya, Yagami
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.62-71
    • /
    • 2004
  • There are 109 A class rivers in Japan. One purpose of river management is to reduce the flooding. For this purpose, government provides the information to public, as flood forecasting, rainfall forecasting and estimate the runoff magnitude to avoid the flood and inundation. In this paper, we introduce current situation of flood forecasting and rainfall forecasting in Japan, and we describe how to use the information of flood forecasting and rainfall forecasting in conjunction with current strategy for river management.

  • PDF

Applications of Geographic Information System and Expert System for Urban Runoff and Quality Management (도시유출 및 수질관리를 위한 지리정보체계 및 전문가시스템의 적용)

  • Lee, Beom-Hui
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.3
    • /
    • pp.253-263
    • /
    • 2001
  • It is very important to select appropriate methods of collecting, predicting, and analyzing information for the development of urban water resources and the prevention of disasters. Thus, in this study an accurate data generation method is developed using Geographic Information System (GIS) and Remote Sensing (RS). The methods of development and application of an expert system are suggested to solve more efficiently the problems of water resources and quality induced by the rapid urbanization. The time-varying data in a large region, the An-Yang cheon watershed, were reasonably obtained by the application of the GIS using ARC/INFO and RS data. The ESPE (Expert System for Parameter Estimation), an expert system is developed using the CLIPS 6.0. The simulated results showed agreement with the measured data globally. These methods are expected to efficiently simulate the runoff and water quality in the rapidly varying urban area.

  • PDF

Legal Improvements for SWG Application Relevant to the Water Loop System with Multi-Water Resources (SWG 추진을 위한 다중수원 워터루프 시스템 관련 법제도 개선방안)

  • Suh, Jin Suhk;Kim, Young Hwa;Han, Kuk Heon;Kim, Dong Hwan
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.127-140
    • /
    • 2014
  • Recently drastic climate changes(e.g., extreme floods and droughts) are often taking place around the world. Even an increase in uncertainty, population, and mega cities has caused drastic changes in water recycle process. As in other countries, Korea has faced some issues relevant to water security. In response to these changes, Smart Water Grid(SWG) system combining the current water resources management with ICT (Information and Communications Technology) is considered as a new paradigm for the Korean water resources management. This study aims to explore and identify influential factors contributing to the SWG system's application to analyze the importance and role of those factors, and then to offer a policy suggestion for the successful application of the SWG system along with legislative improvements in Korea. In this study, we looked at different barriers related to the SWG application and also the complicated Korean water laws, enacted by different ministries and in order to efficiently apply the SWG system to the current Korean water resources management structures. This study employed qualitative research methods to analyze and identify the priorities of the tasks to be implemented by analyzing conditions for the SWG application, especially related to multi water sources and micro water grid, because legal and institutional measures can be more important to manage conflicts between different stakeholders once the SWG enters a phase of standardization and commercialization from its development stage.

  • PDF

Global Assessment of Current Water Resources using Total Runoff Integrating Pathways and Global GIS

  • Taikan Oki;Takao Saruhashi;Yasushi Agata;Shinjiro Kanae;Katumi Musiake
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.67-75
    • /
    • 2001
  • Anticipated water scarcity in the first half of this century is one of the most concerned international issues. However, even though the issue has an international impact and world wide monitoring is critical, there are limited number of global estimates at present. In this study, annual water availability was derived from annual runoff estimated by land surface models using Total Runoff Integrating Pathways (TRIP) with 0.5 degree by 0.5 degree longitude/latitude resolution globally. Global distribution of water withdrawal for each sector in the same horizontal spatial resolution was estimated based on country-base statistics of municipal water use, industrial water use, and agricultural intake, using global geographical information system with global distributions of population and irrigated crop land area. The total population under water stress estimated for 1995 corresponded very well with former estimates, however, the number is highly depend on how to assume the ratio how much water from outside of the region can be used for water resources within the region. It suggests the importance of regional studies evaluating the possibility of water intake as well as the validity of the investment for water resources withdrawal facilities.

  • PDF

A Study on the Application of the Technology Tree for Water Hazard Information Platform (수재해 정보 플랫폼을 위한 기술트리 활용 방안 연구)

  • Kim, Dong-Young;Lee, Jeong-Ju;Chae, Hyo-Sok;Hwang, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.200-214
    • /
    • 2014
  • Technology planning is becoming increasingly important with the rapid development and decline of technology. Technology roadmapping is a tool used to select whether the specific technique of technology planning should pursue which technology and in which time. This technology is important to secure the uncertain future since it will provide a method that is able to share the goals and strategies between organizations. Therefore, technology tree in the planning stage of the problem would be a very useful tool. In this study, both domestic and international technology tree application cases were analyzed to be able to derive a plan for ensuring that the research performed and the requirements are met for the future development and implementation of a convergence portal system. The six major systems that aim at water hazard information platform are basic information providing system, analysis information providing system, water disaster theme providing system, national disaster information system, water disaster augmented reality system and open information platform system. General standardized core technologies corresponding to the needed functions in each target system are derived through brainstorming, and classified according to the technology field to derive the technology tree.