• Title/Summary/Keyword: Water Resources Information

Search Result 1,345, Processing Time 0.025 seconds

Population Genetic Structure of the Korean Endemic Species, Iksookimia pacifica (Pisces: Cobitidae) Distributed in Northeast Korea (한국고유종 북방종개(어류강, 미꾸리과)의 집단유전학적 구조)

  • Jang, Sook-Jin;Ko, Myeong-Hun;Kwan, Ye-seul;Won, Yong-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2017
  • Population genetic studies of 10 groups of Iksookimia pacifica were conducted to investigate the genetic diversity and population genetic structure across its known range in South Korea. Population DNA sequences of one mitochondrial gene (mtCOI) and three nuclear genes (IRBP, EGR2B, RAG1) were examined in samples collected from ten streams that flow into the East Sea. Both mitochondrial and nuclear sequences exhibited significant differentiation among populations except a few cases. The Bayesian analysis of the multi-locus genotypes inferred from the DNA sequences of nuclear genes clustered the individual fish largely into two geographical groups: a northern group (from Baebong stream to Cheonjin stream) and a southern group (Yangyangnamdae stream to Gangneungnamdae stream). Given that the streams flowing into the East Sea are geographically isolated water systems, such separation of genotypes can be interpreted by the geographical separation of common ancestors into north and south that had colonized South Korea. Since the initial geographical separation of the ancestral population by north and south, the ancestral groups seem to have experienced further differentiation into the current genetic clusters through the physical isolation of streams by the East Sea in each region. It is notable that many individuals in the Jasan stream formed a genetic cluster with those of Yangyangnamdae and Gangneungnamdae streams which are distant from each other. In addition, mitochondrial gene showed low genetic differentiation between some neighboring populations and very low level of genetic diversity in several populations. The present population genetic study will provide valuable information for the conservation and management of the Korean endemic fish species, I. paicifica.

Assessment of the Minimum Population Size for ex situ Conservation of Genetic Diversity in Aster altaicus var. uchiyamae Populations Inferred from AFLP Markers (AFLP 마커를 이용한 단양쑥부쟁이 개체군의 유전다양성 보전을 위한 최소개체군의 크기산정)

  • Kim, Chang-Kyun;Kim, Ho-Joon;Choi, Hong-Keun
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.4
    • /
    • pp.470-478
    • /
    • 2011
  • Aster altaicus var. uchiyamae is on the list of endangered species in Korea. Using amplified fragment length polymorphism (AFLP) markers, we investigated the genetic diversity within and among four populations (Guram, Dori Island, Samhap, and Danyang) of A. altaicus var. uchiyamae. We also present the collecting strategies that most efficiently capture the genetic diversity of A. altaicus var. uchiyamae. Four AFLP primer combinations produced a total of 936 bands, of which 934 (99.8%) were polymorphic. A high level of genetic diversity (PPB = 45.3%, h = 0.104, I = 0.168, hs = 0.108) was recognized within the populations of A. altaicus var. uchiyamae. A low degree of genetic differentiation ($G_{ST}$ = 0.075, ${\theta}^B$ = 0.079) was detected among the populations. In addition, analysis of molecular variance (AMOVA) showed that genetic variation was greater within populations (91%) than among populations (9%). These results indicate that the high rate of gene flow has played an important role in forming the present populations of A. altaicus var. uchiyamae. According to maximization strategy, 17, 16, and 11 individuals captured all of the genetic variation in Dori Island, Samhap, and Guram population, respectively. The determination the minimum population size of A. altaicus var. uchiyamae in terms of the genetic information is critical and thereby gain reliable decision support for ex situ conservation of the endangered species, A. altaicus var. uchiyamae.

A Study on Conservation and Management of the Joseon Royal Tomb's System - Focused on Joseon Royal Tombs Under the Eastern District Management Office - (조선왕릉의 능제보존관리에 관한 연구 - 동부지구관리소 산하 조선왕릉을 중심으로 -)

  • Choi, Jong-Hee;Lee, Chang-Hwan;Hwang, Kyu-Man;Kim, Kyu-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.75-87
    • /
    • 2018
  • The purpose of this study is to investigate conservation and management methods of the Joseon Royal Tombs under the Eastern District Management Office. Through the literature survey, we understood the process of change of Joseon royal tombs, and through field surveys and interviews, we understood the status of the interior and the surrounding area. In this process, topography, land use and flow of human traffic, architecture and stone objects, water system, historical forests, and facilities were set as the main evaluation indicators. Urbanization has damaged the original terrains of Royal Tombs as national roads, buildings and facilities have constructed in the inner and outer area of Joseon Royal Tombs. Construction of underground passage, land purchase, relocation and demolition of the buildings are required for the conservation of the Royal Tombs area, and then it is necessary to recover the original terrain. In the case of land use and pathways, there are many disconnection of the original ritual circulation, they should be maintained to remind the sacred atmosphere of the royal tomb. And It is necessary to collect accurate information on the lost buildings and stoneworks through literature survey and excavation investigation, and that investigations should be lead to the exposure or restoration of the ruins. Historical forests require periodic and ongoing monitoring and management, and it is necessary to establish new entrance area and appropriate facilities following the long-Term conservation and management plan. These plans should be classified into short, medium and long-Term projects according to urgency and securing financial resources with a long perspective to implement continuous and systematic projects.

Study on the Selection of the Basin Characteristics Parameters in River Basin Using Satellite Images and GIS (위성영상(衛星映像)과 GIS를 이용한 하천유역(河川流域)의 유역특성인자(流域特性因子) 추출(抽出)추출 관한 연구(硏究))

  • Jo, Myung-Hee;Ahn, Seung-Seop
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.121-134
    • /
    • 1998
  • In this study, the satellite images and the GIS technique are used to select the basin characteristics parameters as the basis of water resources management of river basin. The study area is Geum-ho river basin and the hydrologic characteristics data are computed through the database of the basin characteristics parameters classified by subjects with 35 maps correspond to the study basin of 1:25,000 scale as the basic map. As the result, the drawing up of land use map through satellite image processing that provides the quantitative informations for the land is very efficient to analysis the extensive land use information of the basin, and exact analysis of mass surface data is possible and the feasibility of statistic computation between spatial subjects as it superpose on other subject map is ascertained. It is thought also that the analysis of the basin characteristics data can be utilized very effectively for the basin management and the analysis of basin surface area, once it is expressed numerically for database, since the superposition analysis with different subject map and the correlative analysis with the property data are possible although the tracing process of each subject in the basic map is not efficient. Especially, modification and renewal of the data for the change of land surface become easy, therefore more rapid and exact selection of the basin characteristics data and the construction of more efficient basin management plan are possible.

  • PDF

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

Risk Assessment of Arsenic-Contaminated Groundwater in Multiple Scenarios in a Rural Area of Gyeongnam Province, Korea (경남 농촌 지역 비소 오염 지하수의 시나리오별 위해성 평가)

  • Oh, Serim;Lee, Jin-Yong;Moon, Sang-Ho;Jang, Jiwook;Jeong, Eunju
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.437-448
    • /
    • 2022
  • This work aims to assess the threat to human health of hazardous materials in groundwater that is used domestically and for drinking. Two distinct sub-assessments are considered: cancer and non-cancer risk. The studied groundwater is in an agricultural area of Gyeongnam Province, Korea, and is contaminated by arsenic at a mean level of 16.27 ㎍/L, far greater than the WHO guideline (10 ㎍/L for drinking water). We collected groundwater data from the National Groundwater Information Center (gims.go.kr) and assessed the risk to human health following the methodology of the United States Environmental Protection Agency. We considered three exposure scenarios: domestic use (scenario 1) and drinking use with different doses (scenarios 2 and 3). Scenario 1 had a median hazard quotient (HQ) of 0.77 and a cancer risk (CR) of 0.013. Scenario 2 had a median HQ of 0.08 and a CR of 3.69 × 10-5, and the values for scenario 3 were 0.11 and 4.82 × 10-5, respectively. Scenario 1 is likely the most hazardous to human health. Further study of the origin of arsenic in groundwater in the study area is required, as are remedial measures to mitigate its health effects.

Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme (Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Kim, Byung-Sik;Yoon, Seok-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.383-392
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established. Therefore, uncertainty analysis are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an unexpected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

Utilization of Weather, Satellite and Drone Data to Detect Rice Blast Disease and Track its Propagation (벼 도열병 발생 탐지 및 확산 모니터링을 위한 기상자료, 위성영상, 드론영상의 공동 활용)

  • Jae-Hyun Ryu;Hoyong Ahn;Kyung-Do Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.245-257
    • /
    • 2023
  • The representative crop in the Republic of Korea, rice, is cultivated over extensive areas every year, which resulting in reduced resistance to pests and diseases. One of the major rice diseases, rice blast disease, can lead to a significant decrease in yields when it occurs on a large scale, necessitating early detection and effective control of rice blast disease. Drone-based crop monitoring techniques are valuable for detecting abnormal growth, but frequent image capture for potential rice blast disease occurrences can consume significant labor and resources. The purpose of this study is to early detect rice blast disease using remote sensing data, such as drone and satellite images, along with weather data. Satellite images was helpful in identifying rice cultivation fields. Effective detection of paddy fields was achieved by utilizing vegetation and water indices. Subsequently, air temperature, relative humidity, and number of rainy days were used to calculate the risk of rice blast disease occurrence. An increase in the risk of disease occurrence implies a higher likelihood of disease development, and drone measurements perform at this time. Spectral reflectance changes in the red and near-infrared wavelength regions were observed at the locations where rice blast disease occurred. Clusters with low vegetation index values were observed at locations where rice blast disease occurred, and the time series data for drone images allowed for tracking the spread of the disease from these points. Finally, drone images captured before harvesting was used to generate spatial information on the incidence of rice blast disease in each field.

Sensitivity Analysis on Flood Level Changes by Offline Storage Creation Based on Unsteady Flow Modeling (부정류 모의 기반 오프라인 저류지 조성에 따른 홍수위 변화 민감도 분석)

  • Eun-kyung Jang;Un Ji;Sanghyeok Kim;Jiwon Ryu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.217-225
    • /
    • 2023
  • This study analyzed the effect of flood level reduction in the case of creating and operating offline storage for the Jangdong district, which can be used as a flood buffer space for the Geumgang River, through one-dimensional unsteady flow numerical simulation. In particular, the sensitivity analysis of changes in the height and width (length) of transverse weirs on flood level changes was performed to provide quantitative information necessary for flood control facility (embankment) design. As a result of analyzing the flood control effect of the offline storage based on the peak flood discharge and level, spatially, the flood control effect at the planned flood buffer space site and the downstream end was confirmed, and it was confirmed that the flood reduction effect at the downstream occurred the most. By design conditions of the transverse overflow weir, the greatest flood reduction effect was found under the condition that the overflow weir height based on the 50-year frequency flood level and the transverse overflow weir width (length) of 125 m were considered. The effect of delaying the time to reach the maximum flood due to the operation of the offline storage site was also presented based on unsteady flow modeling.

Analysis of the Runoff Characteristics of Small Mountain Basins Using Rainfall-Runoff Model_Danyang1gyo in Chungbuk (강우-유출모형을 활용한 소규모 산지 유역의 유출특성 분석_충북 단양1교)

  • Hyungjoon Chang;Hojin Lee;Kisoon Park;Seonggoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.31-38
    • /
    • 2023
  • In this study, runoff characteristics analysis was conducted as a basic research to establish a forecasting and warning system for flood risk areas in small mountainous basins in South Korea. The Danyang 1 Bridge basin located in Danyang-gun, Chungcheongbuk-do was selected as the study basin, and the watershed characteristic factors were calculated using Q-GIS based on the digital elevation model (DEM) of the basin. In addition, nine heavy rainfall events were selected from 2020 to 2023 using hydrometeorological data provided by the National Water Resources Management Comprehensive Information System. HEC-HMS rainfall-runoff model was used to analyze the runoff characteristics of small mountainous basins, and rainfall-runoff model simulation was performed by reflecting 9 heavy rainfall events and calculated basin characteristic factors. Based on the rainfall-runoff model, parameter optimization was performed for six heavy rain events with large error rates among the simulated events, and the appropriate parameter range for the Danyang 1 Bridge basin, a small mountainous basin, was calculated to be 0.8 to 3.4. The results of this study will be utilized as foundational data for establishing flood forecasting and warning systems in small mountainous basin, and further research will be conducted to derive the range of parameters according to basin characteristics.