Assessment of the Minimum Population Size for ex situ Conservation of Genetic Diversity in Aster altaicus var. uchiyamae Populations Inferred from AFLP Markers

AFLP 마커를 이용한 단양쑥부쟁이 개체군의 유전다양성 보전을 위한 최소개체군의 크기산정

  • 김창균 (아주대학교 자연과학부 생명과학과) ;
  • 김호준 (한국수자원공사) ;
  • 최홍근 (아주대학교 자연과학부 생명과학과)
  • Received : 2011.04.14
  • Accepted : 2011.08.31
  • Published : 2011.08.31

Abstract

Aster altaicus var. uchiyamae is on the list of endangered species in Korea. Using amplified fragment length polymorphism (AFLP) markers, we investigated the genetic diversity within and among four populations (Guram, Dori Island, Samhap, and Danyang) of A. altaicus var. uchiyamae. We also present the collecting strategies that most efficiently capture the genetic diversity of A. altaicus var. uchiyamae. Four AFLP primer combinations produced a total of 936 bands, of which 934 (99.8%) were polymorphic. A high level of genetic diversity (PPB = 45.3%, h = 0.104, I = 0.168, hs = 0.108) was recognized within the populations of A. altaicus var. uchiyamae. A low degree of genetic differentiation ($G_{ST}$ = 0.075, ${\theta}^B$ = 0.079) was detected among the populations. In addition, analysis of molecular variance (AMOVA) showed that genetic variation was greater within populations (91%) than among populations (9%). These results indicate that the high rate of gene flow has played an important role in forming the present populations of A. altaicus var. uchiyamae. According to maximization strategy, 17, 16, and 11 individuals captured all of the genetic variation in Dori Island, Samhap, and Guram population, respectively. The determination the minimum population size of A. altaicus var. uchiyamae in terms of the genetic information is critical and thereby gain reliable decision support for ex situ conservation of the endangered species, A. altaicus var. uchiyamae.

본 연구는 멸종위기식물인 단양쑥부쟁이(Aster altaicus var. uchiyamae)의 개체군을 대상으로 유전다양성을 유지하는데 필요한 최소개체수를 산정하기 위하여 수행되었다. 단양쑥부쟁이가 분포하고 있는 네 지역에서 각각 유전다양성 및 유전적 분화도를 분석하였다. AFLP(amplified fragment length polymorphism) 마커를 이용한 유전적 변이의 분석결과, 총 4개의 프라이머 조합에 대해서 936개의 밴드가 확인되었으며, 그 중 934개의 밴드(99.8%)가 다형성을 보여주었다. 단양쑥부쟁이 개체군 내에서 유전다양성(PPB = 45.3%, h = 0.104, I = 0.168, hs = 0.108)은 높은 수준으로 나타났으며, 개체군 간 유전적 분화도($G_{ST}$ = 0.075, ${\theta}^B$ = 0.079)는 낮은 수준이었다. AMOVA(Analysis of molecular variance)분석 결과에서도 전체 유전적 변이 중 91%가 개체군 내에서 보이는 반면, 9%는 개체군 간 변이에 기인한 것으로 나타났다. 단양쑥부쟁이 개체군에서 보이는 유전적 특성은 개체군 간의 빈번한 유전자 이동에 기인한 것으로 사료된다. 최대화 전략법에 의하여 경기도 여주일대의 3개 개체군을 대상으로(굴암, 도리섬, 삼합) 개체군 내 최소개체수를 산정한 결과 도리섬개체군에서는 17개체, 삼합개체군에서는 16개체, 굴암개체군에서는 11개체로 파악되었다. 단양쑥부쟁이 개체군의 최소개체수에 대한 정보는 효율적인 현지 외 보전을 위한 가이드라인을 제시해 줄 수 있다.

Keywords

References

  1. Barrett, S.C.H. and J.R. Kohn(1991) Genetic and evolutionary consequences of small population size in plants: Implications for conservation. In: D.A. Falk and K.E. Holsinger (eds.), Genetics and Conservation of Rare Plants. Oxford University Press, Oxford, U.K., pp. 3-30.
  2. Brown A.H.D. and J.D. Briggs(1991) Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: D.A. Falk and K.E. Holsinger (eds.), Genetics and Conservation of Rare Plants. Oxford University Press, Oxford, U.K., pp. 99-119.
  3. Chung, G.Y. and H.J. Jeong(1999) Study on the leaf morphology of Korean Aster L. and its allied taxa. Korean J. Plant Res. 12: 50-61. (in Korean with English abstract)
  4. Chung, G.Y. and H.J. Jeong(2000) Study on the achene morphology of Korean Aster L. and its allied taxa. Korean J. Plant Res. 13: 179-187. (in Korean with English abstract)
  5. Chung, G.Y. and Y.S. Kim(1997) Study on the somatic chromosome numbers of Korean Aster L. and its allied taxa. Korean J. Plant Res. 10: 292-299. (in Korean with English abstract)
  6. Ellstrand, N.C. and D.R. Elam(1993) Population genetic consequences of small population size; implications for plant conservation. Annu. Rev. Ecol. Syst. 24: 217-242. https://doi.org/10.1146/annurev.es.24.110193.001245
  7. Excoffier, L., G. Laval and S. Schneider(2005) Arlequin ver. 3.0.: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50.
  8. Frankham, R., J.D. Ballon and D.A. Briscoe(2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge, 617pp.
  9. Gouesnard, B., T.M. Bataillon, G. Decoux, C. Rozale, D.J. Schoen and J.L. David(2001) MSTRAT: an algorithm for building germ plasm core collection by maximizing allelic or phenotypic richness. J. Hered. 92: 93-94. https://doi.org/10.1093/jhered/92.1.93
  10. Hamrick, J.L. and M.J. Godt(1990) Allozyme diversity in pant species. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir (eds.), Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, Massachusetts, pp. 43-63.
  11. Hartl, D.L. and A.G. Clark(1997) Principles of Population Genetics. Sinauer Associates Inc., Sunderland, Massachusetts, 542pp.
  12. Holsinger, K.E. and P.O. Lewis(2005) Hickory: a package for analysis of population genetic data, ver. 1.0.4. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT.
  13. Hyun, J.O.(2001) Categorization of the threatened plant species in Korea. Ph. D. thesis, Univ. of Sooncheonhyang, Asan, Korea, 288pp. (in Korean with English abstract)
  14. Kim, C., H.R. Na and H.-K. Choi(2008) Conservation genetics of endangered Brasenia schreberi based on RAPD and AFLP markers. J. Plant Biol. 51: 260-268. https://doi.org/10.1007/BF03036125
  15. Kim, S.Y., Y.D. Kim, J.S. Kim, B.H. Yang, S.H. Kim and B.C. Lee(2009) Genetic diversity of Forsythia ovata Nakai (Oleaceae) based on inter-simple sequence repeats (ISSR). Korean J. Pl. Taxon. 39:48-54. (in Korean with English abstract)
  16. Maki, M. and H. Morita(1998) Genetic diversity in island and mainland populations of Aster spathulifolius (Asteraceae). Int. J. Plant Sci. 159: 148-152. https://doi.org/10.1086/297532
  17. Maki, M.(1999) Genetic diversity in the threatened insular endemic plant Aster asa-grayi (Asteraceae). Plant Syst. Evol. 217: 1-9. https://doi.org/10.1007/BF00984918
  18. Maki, M.(2001) Genetic differentiation within and among island populations of the endangered plant Aster miyagii (Asteraceae), an endemic to the Ryukyu Islands. Am. J. Bot. 88: 2189-2194. https://doi.org/10.2307/3558380
  19. Maki, M., M. Masuda and K. Inoue(1996) Genetic diversity and hierarchical population structure of a rare autotetraploid plant, Aster kantoensis (Asteraceae). Am. J. Bot. 83: 296-303. https://doi.org/10.2307/2446164
  20. Mantel, N.(1967) The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.
  21. Matsumoto, J., H. Muraoka and I. Washitani(2000) Ecophysiological mechanisms used by Aster kantoensis, an endangered species, to withstand high light and heat stresses of its gravelly flood plain habitat. Ann. Bot. 86: 777-785. https://doi.org/10.1006/anbo.2000.1245
  22. Miller, M.P.(1997) Tools for Population Genetics Analysis (TFGPA). A Windows program for the analysis of allozyme and molecular population genetic data, ver. 1.3. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ.
  23. Nei, M.(1973) Analysis of gene diversity in subdivided populations. P. Natl. Acad. Sci. USA 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  24. Nybom, H. and I.V. Bartish(2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 93-114. https://doi.org/10.1078/1433-8319-00006
  25. Richards, C.M., M.F. Antolin, A. Reilley, J. Poole and C. Walters(2007) Capturing genetic diversity of wild populations for ex situ conservation: Texas wild rice (Zizania texana) as a model. Genetic Resources and Crop Evolution 54: 837-848. https://doi.org/10.1007/s10722-006-9167-4
  26. SAS Institute Inc.(1999) SAS proprietary software, release 8.0. SAS Institute Inc., Cary, NC.
  27. Shannon, C.E. and W. Weaver(1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
  28. Tamura, K., J. Dudley, M. Nei and S. Kumars(2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software, ver. 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  29. Van Treuren, R., R. Bijlsma, W. Van Delden and N.J. Ouborg (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66: 181-190. https://doi.org/10.1038/hdy.1991.23
  30. Washitani, I., A. Takenaka, N. Kuramoto and K. Inoue(1997) Aster kantoensis Kitam., an endangered flood plain endemic plant in Japan: its ability to form persistent soil seed banks. Biol. Conserv. 82: 67-72. https://doi.org/10.1016/S0006-3207(97)00014-1
  31. Xue, D.W., X.J. Ge, G. Hao and C.Q. Zhang(2004) High genetic diversity in a rare, narrowly endemic Primrose species: Primula interjacens by ISSR analysis. Acta Botanica Sinica 46: 1163-1169.
  32. Yeh, F., R.C. Yang and T. Boyle(1997) POPGENE. A user-friendly shareware for population genetic analysis, ver. 1.31. Molecular and Biotechnology Center, University of Alberta, Edmonton.