• Title/Summary/Keyword: Water Pressure Measurement

Search Result 353, Processing Time 0.049 seconds

Empirical Correlations for Penetration Height of Liquid Jet in Uniform Cross Flow - A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.176-185
    • /
    • 2011
  • The empirical correlations for the prediction of penetration height of liquid jet in crossflow are reviewed and classified in this study. Around thirty different correlations had been proposed by many investigators. It has generally known that the penetration height of a liquid jet in a cross-flow is a function of the liquid to air momentum flux ratio and the normalized downstream distance from the injector. However, several researchers incorporated the Weber number, liquid-to-water or air viscosity ratio, pressure ratio or Reynolds number, temperature ratio in the empirical correlations. The existing correlations can be grouped as correlations in a power-law, logarithmic, and exponential forms, respectively. Correlations in a power-law form can be further classified as three groups such as basic form, Weber number form and other parameters form. It should be pointed out that correlations in a logarithmic form in terms of Weber number or any other parameters could not be found. Universal correlation has still not been established due to the significant discrepancies between various correlations suggested to date. Several of the studies reported the significant discrepancies of predicted values by the existing correlations. The possible reasons for discrepancies will be summarized as measurement technique, assumptions made in defining terms in the liquid to air momentum flux ratio, difficulties in defining the boundaries of the liquid jets, and nozzle/injector geometry. Evaluation of validity for the correlations proposed recently by several investigators is essentially required. Those include eight power-law forms, two logarithmic forms, and one exponential form.

Measurement of Nonwoven Geotextile Deformation with Strain Gauges (스트레인 게이지를 이용한 부직포의 변형거동 계측)

  • Won, Myoung-Soo;Lee, Yong-An;Ko, Hyoung-Woo;Kim, You-Seong;Park, Byung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.96-102
    • /
    • 2006
  • Because of the increasing need to use clayey soil as the backfill in reinforced soil structures and embankment material, nonwoven geotextiles with the drain capability have been receiving much attention. However, there are few studies of the deformation behavior of nonwoven geotextiles at geosynthetics reinforced soil structures in the field because the nonwoven geotextile, which has low tensile stiffness and higher deformability than geogrids and woven geotextiles, is difficult to measure its deformation by strain gauges and to prevent the water from infiltrating. This study proposes a new, more convenient method to measure the deformation behaviour of nonwoven geotextile by using a strain gauge; and examines the availability of the method by conducting laboratory tests and by applying it on two geosynthetics reinforced soil (GRS) walls in the field. A wide-width tensile test conducted under confining pressure of 7kPa showed that the local deformation of nonwoven geotextile measured with strain gauges has a similar pattern to the total deformation measured with LVDT. In the field GRS walls, nonwoven geotextile showed a larger deformation range than the woven geotextile and geogrid; however, the deformation patterns of these three reinforcement materials were similar. The function of strain gauges attached to nonwoven geotextile in the walls works normally for 16 months. Therefore, the method proposed in this study for measuring nonwoven geotextile deformation by using a strain gauge proved useful.

  • PDF

Implementation of Marine Optical Sensor System Using A Line-CCD (Line-CCD를 이용한 수중광학 센서 시스템의 구현)

  • Jeong, Ui-Seok;Lee, Dong-Ho;Lee, Kyoung-Woon;Lim, A-Ram;Jeong, Jae-Wook;Park, Jung-Ho
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.244-249
    • /
    • 2010
  • We fabricated optical sensor system that take a measurement particles using a line-CCD in ocean. To measure particles, we used 680nm laser diode which is appropriate. we tested to operate optical system in water tank and ocean. It has performance that detected signal of sensors transfer microprocessor, FPGA as long as move up and down it's motion. The system algorithm also analysis output -pressure, temperature, particle numbers in depth.-For experiment, our particle sensor system has high accuracy counter. therefore, we proposed that a line-CCD is available on optical sensor system in ocean.

The Efficacy and Safety of Tetrachlorodecaoxide in Comparison with Super-oxidised Solution in Wound Healing

  • Parikh, Romil;Bakhshi, Girish;Naik, Madhushree;Gaikwad, Bhargav;Jadhav, Kavita;Tayade, Mukund
    • Archives of Plastic Surgery
    • /
    • v.43 no.5
    • /
    • pp.395-401
    • /
    • 2016
  • Background Some of the relatively newer, more efficacious, and potent topical wound dressing solutions include tetrachlorodecaoxide and super-oxidised solution. This study compares the efficacy and safety of these two drugs. Methods This is a block-randomised, double blind, parallel-arm, post-marketing study. One hundred fifty patients with ulcers (75 blocks uniform for sex, ulcer aetiology, diabetes mellitus, and wound area score) were randomised into the two treatment arms. Patients were observed for eight weeks with weekly assessments. One hundred and twenty patients completed the study. Wound healing was objectively assessed by measurement of wound area, scoring of wound exudation and tissue type, and using the pressure ulcer scale of healing Tool (validated for multiple wound aetiologies). Subjective improvement in pain was noted using a visual analogue scale. Both groups were compared using Mann-Whitney U test on all indicators. Results Difference in change in wound tissue type in the two groups was significant (${\alpha}$=0.05) by intention-to-treat (ITT) and per-protocol (PP) analysis at the end of week two (ITT and PP, P<0.001) and week four (ITT, P=0.010; PP, P=0.009). P-values for other comparisons were not significant (P>0.05). No study-related adverse events were observed. Conclusions Both drugs are efficacious. Tetrachlorodecaoxide yields healthy granulation tissue earlier. Both drugs appear to be safe for application.

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

Study of the Factors of a Submarine Crews' Turnover Intention Based on Kano Model and Suggestion of the Policy Measures (잠수함 승조원의 이직의도 요인 분석을 통한 정책방안제시- Kano모델을 이용하여 -)

  • Bae, Dae Suk;Chae, Myungsin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4950-4960
    • /
    • 2014
  • This study examined the factors affecting submarine crews' turnover intention. This study reviewed previous research-related turnover in military organizations. The measurement was designed based on the Kano model, which was originally used to survey the customers' satisfaction with a service or a product. The authors conducted a questionnaire survey of 408 submarine crew, from 1, Nov to 30, Nov, 2013. The results showed that the factors that impact the submarine crews' turnover were the sense of insecurity due to the a poor working environment of the submarine, physical risks due to the water pressure, anxiety due to the closed space, and insecure rank-limited promotion system. The paper discusses the implications of the results from the perspective of military social welfare and provides recommendations for setting up the policy for submarine crews' welfare based on the study result.

Laboratory/In situ Sound Velocities of Shelf Sediments in the South Sea of Korea

  • Kim, Dae-Choul;Kim, Gil-Young;Jung, Ja-Hun;Seo, Young-Kyo;Wilkens, Roy H.;Yoo, Dong-Geun;Lee, Gwang-Hoon;Kim, Jeong-Chang;Yi, Hi-Il;Cifci, Gunay
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Compressional sound velocities of shelf sediments in the South Sea of Korea, were measured in situ and in the laboratory for six cores. In situ sound velocity was measured using the Acoustic Lance (frequency of 7.5-15 kHz), while laboratory velocity was measured by the pulse transmission technique (frequency of 1MHz). Physical properties were relatively uniform with sediment depth, suggesting little effect of sediment compaction and/or consolidation. Average in situ velocity at each core site ranged from 1,457 to 1,488 m/s, which was less than the laboratory velocity of 1,503 and 1,604m/s. In muddy sediments the laboratory velocity was 39-47 m/s higher than in situ velocity. In sandy sediments, the difference was greater by an average of 116 m/s. Although the velocity data were corrected by the velocity ratio method based on bottom water temperature, the laboratory velocity was still higher than the in situ velocity (11-21 m/s in muddy sediments and 91 m/s in sandy sediments). This discrepancy may be caused by sediment disturbance during core collection and/or by the pressure of Acoustic Lance insertion, but it was most likely due to the frequency difference between in situ and laboratory measurement systems. Thus, when correcting laboratory velocity to in situ velocity, it is important to consider both temperature and frequency.

The Field Application of Miniature Cone Penetration Test System in Korea (소형콘관입시험(Miniature Cone Penetration Test)의 국내현장 적용)

  • Yoon, Sung-Soo;Ji, Wan-Goo;Kim, Jun-Ou;Kim, Rae-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.349-360
    • /
    • 2009
  • The cone penetration test(CPT) has gained its popularity in site characterization indebted by its reliability, speed, economy, and automatic measurement system since its development in the 1930s. The CPT results, commonly consisting of cone tip resistance, sleeve friction, and pore water pressure measurements, allow us to classify soils as well as to reveal their engineering characteristics. The site condition at which the CPT is allowable is often dependent on the capacity of a CPT system. In Korea, it has been considered that the CPT could be appled only to soft soils in most cases because CPT systems available for stiff soils are very rare due to their expensive procurement and maintenance cost. Luoisiana Transportation Research Center(LTRC) has developed and implemented a field-rugged continuous intrusion miniature cone penetration test(CIMCPT) system since the late 1990s. The miniature cone penetrometer has a sectional cone area of $2cm^2$ allowing system capacity reduction compared to the standard $10cm^2$ cone penetrometer. The continuous intrusion mechanism allows fast and economic site investigation. Samsung Engineering & Construction has recently developed and implemented a similar CIMCPT system based on its original version developed in LTRC. The performance of the Samsung CIMCPT system has been investigated by calibration with the standard CPT system at a well-characterized test site in Pusan, Korea. In addition, scale effect between the miniature cone penetrometer and the standard cone penetrometer has been investigated by comparing the field test results using the both systems.

  • PDF

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF

Nominal Wake Measurement for KVLCC2 Model Ship in Regular Head Waves at Fully Loaded Condition (선수 규칙파 중 만재상태의 KVLCC2 모형선 공칭반류 계측)

  • Kim, Ho;Jang, Jinho;Hwang, Seunghyun;Kim, Myoung-Soo;Hayashi, Yoshiki;Toda, Yasuyuki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.371-379
    • /
    • 2016
  • In the ship design process, ship motion and propulsion performance in sea waves became very important issues. Especially, prediction of ship propulsion performance during real operation is an important challenge to ship owners for economic operation in terms of fuel consumption and route-time evaluation. Therefore, it should be considered in the early design stages of the ship. It is thought that the averaged value and fluctuation of effective inflow velocity to the propeller have a great effect on the propulsion performance in waves. However, even for the nominal velocity distribution, very few results have been presented due to some technical difficulties in experiments. In this study, flow measurements near the propeller plane using a stereo PIV system were performed. Phase-averaged flow fields on the propeller plane of a KVLCC2 model ship in waves were measured in the towing tank by using the stereo PIV system and a phase synchronizer with heave motion. The experiment was carried out at fully loaded condition with making surge, heave and pitch motions free at a forward speed corresponding to Fr=0.142 (Re=2.55×106) in various head waves and calm water condition. The phase averaged nominal velocity fields obtained from the measurements are discussed with respect to effects of wave orbital velocity and ship motion. The low velocity region is affected by pressure gradient and ship motion.