• 제목/요약/키워드: Water Loading Effect

검색결과 348건 처리시간 0.029초

A CONTROLLED CYCLIC LOADING ON THE SURFACE TREATED AND BONDED CERAMIC: STAIRCASE METHOD

  • Yi, Yang-Jin
    • 대한치과보철학회지
    • /
    • 제46권3호
    • /
    • pp.298-306
    • /
    • 2008
  • STATEMENT OF PROBLEM: Effect of surface treatment of ceramic under loading does not appear to have been investigated. PURPOSE: The aim of this study was to investigate the effect of surface treatment of esthetic ceramic, which is performed to increase the bonding strength, on the fracture stress under controlled cyclic loading condition. MATERIAL AND METHODS: Sixty 1.0 mm-thick specimens were made from Mark II Vitablocs (Vita Zahnfabrik, Germany) and divided into 3 groups: polished (control), sandblasted, and etched. Specimens of each group were bonded to a dentin analog material base including micro-channels to facilitate the flow of water to the bonding interface. Bonded ceramics were cyclically loaded with a flat-end piston in the water (500,000 cycles, 15Hz). Following completion of cyclic loading, specimens were examined for subsurface crack formation and subsequent stress was determined and loaded to next specimen by the staircase method according to the crack existence. RESULTS: There were significant differences of mean fatigue limit in the sandblasted (222.86 ${\pm}$ 23.42 N) and etched group (222.86 ${\pm}$ 14.16 N) when compared to polished group (251.43 ${\pm}$ 10.6 N) (P<.05; Wald-type pair-wise comparison and post hoc Bonferroni test). Of cracked specimens, surface treated group showed longer crack propagation after 24 hours. All failures originated from the radial cracking without cone crack. Fracture resistance of this study was very low and comparable to failure load in the oral cavity. CONCLUSION: Well controlled cyclic loading could induce clinically relevant cracks and fracture resistance of Mark II ceramic was relatively low applicable only to anterior restorations. Surface treatment of inner surface of feldspathic porcelain in the matsicatory area could influence lifetime of restorations.

ASBR(Anaerobic Sequencing Batch Reactor) 공정의 F/R비가 암모니아가 탈기된 축산폐수의 유기물 제거에 미치는 영향 (Effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) Process on Removal of the Organic Matters in Ammonia Stripped Swine Wastewater)

  • 황규대;조영무
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.687-694
    • /
    • 2005
  • Lab-scale experiments have been carried out to investigate the effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) process on the removal of the organic matters in ammonia stripped swine wastewater. Three ASBR inoculated with sludge mixed with granular sludge of UASB (Upflow Anaerobic Sludge Blanket) and anaerobic digested sludge of municipal wastewater treatment plant were operated. Ammonia stripped swine wastewater was used as influent. Prior to conducting the experiments with varied conditions, the effect of increasing organic loading rate from 2.34 to $5.79gTCOD_{Cr}/L$-day at a fixed F/R ratio of 0.1 on the organic removal efficiency has been studied during start-up period. As the result of the experiment, under the condition of varied organic loadings, less than $4.14gTCOD_{Cr}/L$-day, the removed efficiency $TCOD_{Cr}$ of the ASBR process is 83% resulted from the mean value of effluent $TCOD_{Cr}$, 9,125 mg/L during the start-up period. Then ASBRs were operated with F/R ratio of 0.024, 0.303 and 0.91 respectively. Organic loading rate was increased from 4.56 to $15.43gTCOD_{Cr}/L$-day to investigate the effects of F/R ratio and organic loading rate on the organic removal efficiency. As the result of the experiment, less than $6.23gTCOD_{Cr}/L$/L-day, F/R ratio haven't an effect on the organic removal efficiency and the mean removal efficiency of TSS, $TCOD_{Cr}$ and $SCOD_{Cr}$ was about 80%, 86% and 78% at the all of F/R ratio. But as organic loading rate was increased from 8.54 to $12.04gTCOD_{Cr}/L$-day at the F/R ratio of 0.024, the removal efficiency of $SCOD_{Cr}$ decreased from 71% to 63%. The range of decreased removal efficiency of $SCOD_{Cr}$ at the F/R ratio of 0.024 was much more higher than at the F/R ratio of 0.303, 0.91. Thus, as organic loading rate was increased, ASBRs were operated with high F/R ratio to obtain high removal efficiency.

화강풍화토에서 Scale Effect를 고려한 기초의 지지력 및 침하량 산정에 관한 연구 (A Research for Computation of Bearing Capacity and Settlement of Foundation Considering Scale Effect in Weathered-granite Layer)

  • 박용부;정형식
    • 한국지반공학회논문집
    • /
    • 제20권1호
    • /
    • pp.131-139
    • /
    • 2004
  • 지내력기초 설계와 시공을 위해 실시하는 평판재하시험 결과로부터 실제 기초지반의 지지력 및 침하량을 산정할때 scale effect를 고려해야 하는데 국내에는 scale effect 적용기준이나 관련 시험자료가 없다. 그래서, 화강풍화토 지반에서 재하판 크기별 지지력 및 침하량의 상관관계를 파악하기 위해 모형토조 및 현장 평판재하시험을 실시하였다. 토조시험은 토조내에 지층을 형성한후 함수비 조건, 다짐횟수, 습윤 단위중량, 및 재하판 직경(D15, 25cm)별로 모형토조$(2,000\times 2,000\times 1,000mm)$에서 실시하였다. 현장 재하시험은 재하판 직경$(D15, 25, 30, 40, 75\times 75, 140\times 210cm)$별로 실시하였다. 재하시험 결과분석과 수치해석을 통해 토사 및 암반지반에서 지내력 기초설계시 Scale effect를 계산하기 위한 지지력 및 침하량 산정식을 제시하였다.

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

황/석회석 충전비가 황-이용 탈질효율에 미치는 영향 (The Effect of Sulfur/Limestone Ratio on the Efficiency of Sulfur-Utilizing Denitrification)

  • 신형순;이일수;황용우;배재호
    • 상하수도학회지
    • /
    • 제14권3호
    • /
    • pp.271-280
    • /
    • 2000
  • This study was conducted to determine the applicable loading rate and to evaluate the possibility of using limestones as an alkalinity source for the removal of ${NO_3}^{-}-N$ remaining after denitrification/nitrification process with the down-flow sulfur packed bed reactor(SPBR). The pretreated sewage was fed to SPBR. Three SPBRs were filled with elemental sulfur particles and limestones and the volumetric ratios of sulfur to limestone were 0%, 12.5% and 25% for R-0%, R-12.5% and R-25%, respectively. The applicable loading rate was evaluated increasing flow rate with influent ${NO_3}^{-}-N$ concentration of 20 mg/L. For R-0% with external alkalinity supply, denitrification efficiency was greater than 96% up to loading rate of $354.8g\;{NO_3}^{-}-N/m^3{\cdot}day$, and corresponding EBCT was 1.4hr. For R-12.5% and R-25%, where alkalinity was supplied by the limestone filled in the reactor, denitrification efficiency was greater than 94% up to loading rate of $283.8g\;{NO_3}^{-}-N/m^3{\cdot}day$, and corresponding EBCT was 1.7hr. The slightly better performance of R-12.5 compared to R-25 suggests that the volumetric sulfur to limestone ratio of 12.5% was enough for the supply of alkalinity required for sulfur-utilizing denitrification. DO was appeared not showing inhibitory effect on sulfur-utilizing denitrification. The clogging of SPBR caused by the produced gas can effectively be eliminated by regular introduction of treated water in up-flow mode.

  • PDF

도로면 강우유출수의 입도분포를 고려한 여재특성 비교분석 (A Comparison of Filtering Characteristics of Various Media considering Particle Size Distribution of Road Runoff)

  • 구본진;최계운;최원석;송창수
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.299-312
    • /
    • 2013
  • This study investigated the contaminant loading and characteristics of particle size distributions(PSDs) in the rainfall runoff from two different sources, the pavement road and the ancillary parking lot, and then evaluated four different types of filter media(i.e., EPP, EPS, Zeolite, and Perlite) to treat runoff water. The results showed that runoff from the pavement road contains 5.6 and 20 times higher SS and Pb concentrations, respectively, than that from the parking lot. The particles smaller than $100{\mu}m$ occupied 89.8 % of runoff from the pavement road and 81.4 % of that from the parking lot by volume. The effect of the hydraulic loading, at 950 m/day filtering linar velocity and 40 cm head loss, was largest for Zeolite, followed by Perlite, EPS, and EPP. The return period of tested media calculated by the regression equation for head loss indicated that EPP has the longest life time. The average SS removal rate was similar for all media at between 84.9 % and 89 %, while the effect of various filter column heights was different, showing minimal for EPP and maximum for EPS. All filter media tested demonstrated over 95 % of SS treatment efficiency for the particles bigger than $100{\mu}m$, while for the ones smaller than $100{\mu}m$ the efficiency was in order of EPP(82.4%) > Perlite(76.1 %) > EPS(66.2 %) > Zeolite(65.2 %). The results in conclusion implies that EPP is most effective filter media for the highly contaminated fine particles from road runoff.

Multivesicular Liposomes for Oral Delivery of Recombinant Human Epidermal Growth Factor

  • Li Hong;An Jun Hee;Park Jeong-Sook;Han Kun
    • Archives of Pharmacal Research
    • /
    • 제28권8호
    • /
    • pp.988-994
    • /
    • 2005
  • The purpose of the present study was to prepare multivesicular liposomes with a high drug loading capacity and to investigate its potential applicability in the oral delivery of a peptide, human epidermal growth factor (rhEGF). The multivesicular liposomes containing rhEGF was prepared by a two-step water-in-oil-in-water double emulsification process. The loading efficiency was increased as rhEGF concentration increased from 1 to 5mg/mL, reaching approximately $60\%$ at 5 mg/mL. Approximately $47\%$ and $35\%$ of rhEGF was released from the multivesicular liposomes within 6 h in simulated intra-gastric fluid (pH 1.2) and intra-intestinal fluid (pH 7.4), respectively. rhEGF-loaded multivesicular liposomes markedly suppressed the enzymatic degradation of the peptide in an incubation with the Caco-2 cell homogenate. However, the transport of rhEGF from the multivesicular liposomes to the basolateral side of Caco­2 cells was two times lower than that of the rhEGF in aqueous solution. The gastric ulcer healing effect of rhEGF-loaded multivesicular liposomes was significantly enhanced compared with that of rhEGF in aqueous solution; the healing effect of the liposomes was comparable to that of the cimetidine in rats. Collectively, these results indicate that rhEGF-loaded multivesicular liposomes may be used as a new strategy for the development of an oral delivery system in the treatment of peptic ulcer diseases.

유입부하가 DEPHANOX 및 Modified-DEPHANOX 공정에 미치는 영향 (Effect of Loading Rate in the Operation of DEPHANOX and Modified-DEPHANOX Processes)

  • 류홍덕;민경국;이상일
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.24-31
    • /
    • 2004
  • This study was initiated to evaluate the efficiencies of DEPHANOX and Modified-DEPHANOX, which were devoloped to enhance nitrogen removal efficiency in municipal wastewater treatment. In the results, removal efficiency of organic matters was not affected much by increased loading rate of organic matters which is contained in influent. The nitrogen removal efficiencies according to the loading rate of influent TN was decreased drastically in conditions of over $0.2kg/m^3{\cdot}day$, which is T-N loading rate, and the DEPHANOX process was affected more sensitively than the M-DEPHANOX was. When the temperature was altered from $25^{\circ}C$ to $16^{\circ}C$ at HRT 6hrs, the removal efficiency of ammonia nitrogen was still over 90% and it was concluded that both DEPHANOX and M-DEPHANOX were strong enough to endure temperature variation. Moreover, both processes showed over 90% in ammonia removal efficiencies in over HRT 5hrs, so it was concluded that they were strong in HRT variation. M-DEPHANOX process showed a higher value than DEPHANOX did in T-N removal efficiency to the extent of 4~21 %, which resulted from differency of denitrification rates and the biosorption efficiency of organic matter in both processes. In the condition of HRT less than 4hrs, concentrations of ammonia nitrogen contained in effluents and nitrification reactors, might be sensitively affected by biosorption efficiency of organic matters in first separation tank. In the effect of effluent nitrate concentration in phosphorus removal, the more effluent nitrate concentration was decreased, the more phosphorus removal efficiency was increased. This result is related to the decrease of concentration of effluent nitrate which resulted from nitrification inhibition by decreased HRT.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

수압을 고려한 터널 라이닝의 응답 해석 (Response analysis of tunnel lining considering pore pressure)

  • 김기태;김영재;박두희
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.541-544
    • /
    • 2008
  • Generally numerical analysis of tunnel lining, under dynamic loading condition, performed not considering pore pressure. But if tunnel excavated under the surface of water, such as bottom of the sea, the river bed, tunnel lining can take pore water pressure. It may be different from evaluated numerical analysis not considering pore pressure. Therefore tunnel design should consider effect of water pressure acting on tunnel lining.

  • PDF