• Title/Summary/Keyword: Water Deficit

Search Result 351, Processing Time 0.029 seconds

Temporal and Spatial Distributions of Basic Water Quality in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역에서 기초수질의 시공간적 분포특성)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Oh, Young-Taek;Heo, Woo-Myoung;Lee, Yun-Kyoung;Park, Yong-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.206-215
    • /
    • 2008
  • Temporal and spatial distributions of salinity, temperature, dissolved oxygen (DO), and turbidity were investigated at seven sites in the upper regions of brackish Lake Sihwa with a limited water exchange, from March to October 2005. During the study period, salinity and temperature varied $0.1{\sim}29.9\;psu$ and $4.7{\sim}28.1^{\circ}C$, respectively, depending on seasons and sites sampled. A distinct halocline profile showing the maximum density gradient (difference over $20\;psu\;m^{-1}$ between surface and bottom layers) was observed during the rainy season, due to the decrease of salinity in surface layers by freshwater inflow. This result implies that rainfall event is the important factor forming the halocline. On the other hand, the depth and location of haloeline varied with the amount of seawater through the sluice gates and the operation systems (inflow or outflow). High DO (over 300% saturation) was observed at surface layer above the halocline in April when red tide occurred, whereas low DO (below 20% saturation) was at the bottom layer below the halocline in the rainy season. Turbidity ranged $1.5{\sim}80.3\;NTU$ showing the maximum turbidity at the layers above or upper the halocline. As a result, the distributions of DO and turbidity in the upper regions of brackish Lake Sihwa were largely affected by the variation of salinity. Also, when the halocline was formed, the water quality between upper and lower water layers may be expected completely different. This study suggests that the physicochemical characteristics of water in the brackish regions are closely associated with the causes of eutrophication such as red tide and DO deficit.

Ameliorating Effect of Water Extract from Dendropanax morbifera Lev. on Memory Dysfunction in Streptozotocin-induced Diabetic Rats (스트렙토조토신(Streptozotocin) 유발 당뇨 동물모델에서 황칠나무 잎 추출물의 학습 및 기억력 개선 효과)

  • Kim, Ji Hye;Bae, Dong hyuck;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.275-283
    • /
    • 2016
  • An anti-amnesic effect of water extract from Dendropanax morbifera Lev. leaves (DMW) on memory dysfunction in streptozotocin-induced diabetic rats was investigated to assess its potential industrial value. Daily administration of DMW (11 weeks) significantly reduced serum glucose, insulin, and blood urea nitrogen (BUN) levels increased by an intraperitoneal injection of streptozotocin (STZ, 55 mg/kg). In addition, the administration of DMW decreased escape latency and increased the time spent in the platform quadrant in the Morris water maze test. Step-through latency in a passive avoidance test was also improved. Finally, DMW produced ameliorating effects on STZ-induced cholinergic deficit through an inhibitory effect on acetylcholinesterase and the increment of acetylcholine level in the hippocampus. These results suggest that DMW might be used as a natural substance for improving diabetic induced cognitive impairment.

Microclimatological Characteristics Observed from the Flux Tower in Gwangneung Forest Watershed (플럭스 타워에서 관측된 광릉 산림 소유역의 미기후학적 특징)

  • Choi Taejin;Lim Jong-Hwan;Chun Jung-Hwa;Lee Dongho;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.35-44
    • /
    • 2005
  • Microclimate of Gwangneung forest watershed is characterized by analyzing wind, radiation, profiles of air temperature and humidity, soil and bole temperature, precipitation and soil water content measured at and around the flux tower from April 2000 to September 2003. Mountain-valley wind was prevalent due to the topographic effect with dominant wind from east during daytime and relatively weak wind from west during nighttime. Air temperature reaches its peak in July-August whereas monthly-averaged incoming shortwave radiation shows its peak in May due to summer monsoon. Albedo ranges from 0.12 to 0.16 during the growing season. Monthly-averaged bole temperature is in phase with monthly- averaged air temperature which is consistently higher. Monthly-averaged soil temperature lags behind air temperature and becomes higher with leaf fall. With the emergence of leafage in April, maximum temperature level during midday shifts from the ground surface to the crown level of 15-20m in May. Profiles of water vapor pressure show a similar shift in May but the ground surface remains as the major source of water. Vapor pressure deficit is highest in spring and lowest in winter. Monthly averaged surface soil temperatures range from 0 to 20℃ with a maximum in August. Monthly averaged trunk temperatures of the dominant tree species range from -5.8 to 21.6℃ with their seasonal variation and the magnitudes similar to those of air temperature. Annual precipitation amount varies significantly from year to year, of which >60% is from July and August. Vertical profiles of soil moisture show different characteristics that may suggest an important role of lateral movement of soil water associated with rainfall events.

Studies on the Productivity of Korean White Pine Forest (I) Effects of Temperature, Light and Water Stress on Photosynthesis and Dark Respiration Rates of Leaves (잣나무림(林)의 물질생산력(物質生産力)에 관(関)한 연구(硏究) (I) 엽(葉)의 광합성속도(光合成速度)와 호흡속도(呼吸速度)에 미치는 광(光)․온도(溫度)․수분(水分)의 영향(影響))

  • Han, Sang Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.55 no.1
    • /
    • pp.55-58
    • /
    • 1982
  • This study is to investigate the effects of temperature, light and water deficit on apparent phytosynthesis rate (Pn) and dark respiration rate(Rd) of leaves in the series of studies dealing with primary productivity of korean white pine forest. The results obtained are as follows: 1. The light saturation for Pn occured at about 40 Klux, and light compensation at 1.0 to 1.3 Klux. 2. The Pn of current leaves was highest, and Pn was decreased with increasing leaf age. 3. The Rd on the response of temperature in February was about two times value in all of the temperature ranges as compared with the ones in August. 4. The incipient water stress, above which Pn and Rd declined from 100%, was different for Pn(-10bar). The high water stress required to reduce Pn to nearly 0%, at -24 bar, but Rd was only 43% at -24 bar. 5. The optimum temperature range for Pn showed about 15 to $18^{\circ}C$ in February and 23 to $26^{\circ}C$ in August.

  • PDF

Effect of Sodium in Artificial substrate on the Growth, Gas Exchange and Leaf Water Status of Cucumber (Cucumis sativa L.) and Korea Melon(Cucumis melo L.) (상토에 함유된 Na함량이 오이와 참외의 생육, 광합성 및 잎의 수분상태에 미치는 영향)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Chan-Yong;Park, So-Deuk;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Sodium is known to reduce a plant growth and yields. However, the relationships between physiological response of seedling and salinity stress caused by growing media are not well understood yet. We conducted experiments to investigate change of some parameters including Na, EC, moisture content in media under different air temperature ($15^{\circ}C$, $25^{\circ}C$), and the response of fruit-vegetables such as cucumber, oriental melon on saline conditions originated from horticultural substrate. Volumetric moisture content of media at $15^{\circ}C$ was 70%, but at $25^{\circ}C$ was decreased by 45% within 22 hrs, showing below optimal matric potential, approximately. During reaction time, the increase of Na concentration was significantly greater in saline substrate than in control. The decrease rate of Na concentration according to supplying irrigation water was higher in saline substrate than in control. $CO_2$ assimilation rate and transpiration rate of Korea melon grown in low temperature were decreased with a Na/cation ratio in hydroponic solution. Water saturation deficit was also increased significantly at $15^{\circ}C$ as compare to $25^{\circ}C$. Saline stress during nursery stage induced a reduction of seedling quality, growth and cucumber yield. The results suggest that the relationship between uncontrolled Na uptake of seedling from saline substrate and meteological condition is responsible for saline stress.

Physiological responses to drought stress of transgenic Chinese cabbage expressing Arabidopsis H+-pyrophosphatase (애기장대 H+-pyrophosphatase 발현 형질전환 배추의 건조스트레스에 대한 생리적 반응)

  • Jeong, Mihye;Kang, In-Kyu;Kim, Chang Kil;Park, Kyung Il;Choi, Cheol;Han, Jeung-Sul
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.156-162
    • /
    • 2013
  • Plant tolerance to drought is a beneficial trait for stabilizing crop productivity under water deficits. Here we report that genetically engineered Chinese cabbage expressing Arabidopsis $H^+$-pyrophosphatase (AVP1) shows enhanced physiological parameters related to drought tolerance. In comparison with wild type plants under soil water deficit stress created by cessation of irrigation, soil water potential in pot with AVP1-expressing plants was more rapidly decreased that might lead to increased relative water content in leaves, while both genotypes had indistinguishable wilting phenotypes. Transgenic plants subjected to drought treatment also exhibited higher photosystem II quantum yield in addition to lower electrolyte leakage and $H_2O_2-3,3^{\prime}$-diaminobenzidine content when compared to wild type plants.

Effects of ginseol k-g3, an Rg3-enriched fraction, on scopolamine-induced memory impairment and learning deficit in mice

  • Pena, Ike Dela;Yoon, Seo Young;Kim, Hee Jin;Park, Sejin;Hong, Eun Young;Ryu, Jong Hoon;Park, Il Ho;Cheong, Jae Hoon
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Background: Although ginsenosides such as Rg1, Rb1 and Rg3 have shown promise as potential nutraceuticals for cognitive impairment, their use has been limited due to high production cost and low potency. In particular, the process of extracting pure Rg3 from ginseng is laborious and expensive. Methods: We described the methods in preparing ginseol k-g3, an Rg3-enriched fraction, and evaluated its effects on scopolamine-induced memory impairment in mice. Results: Ginseol k-g3 (25-200 mg/kg) significantly reversed scopolamine-induced cognitive impairment in the passive avoidance, but not in Y-maze testing. Ginseol k-g3 (50 and 200 mg/kg) improved escape latency in training trials and increased swimming times within the target zone of the Morris water maze. The effect of ginseol k-g3 on the water maze task was more potent than that of Rg3 or Red ginseng. Acute or subchronic (6 d) treatment of ginseol k-g3 did not alter normal locomotor activity of mice in an open field. Ginseol k-g3 did not inhibit acetylcholinesterase activity, unlike donezepil, an acetylcholinesterase inhibitor. Rg3 enrichment through the ginseol k-g3 fraction enhanced the efficacy of Rg3 in scopolamine-induced memory impairment in mice as demonstrated in the Morris water maze task. Conclusion: The effects of ginseol k-g3 in ameliorating scopolamine-induced memory impairment in the passive avoidance and Morris water maze tests indicate its specific influence on reference or long-term memory. The mechanism underlying the reversal of scopolamine-induced amnesia by ginseol k-g3 is not yet known, but is not related to anticholinesterase-like activity.

Control of Stretching of Tomato (Lycopersicon esculentum Mill.) on Cylindrical Paper Pot Seedling Using High-Salinity Potassium Fertilizers (고농도 칼륨처리를 활용한 원통형 종이포트 토마토묘의 도장억제)

  • Xu, Chan;Kim, Si Hong;Kim, Dae Hoon;Kim, Jae Kyung;Heo, Jae Yun;Vu, Ngoc Thang;Choi, Ki Young;Kim, Il Seop;Jang, Dong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.354-364
    • /
    • 2020
  • This study was conducted to examine the potential of inducing salinity stress on cylindrical paper pot tomato seedlings to inhibit overgrowth. Potassium fertilizers, sulfate of potash (K2SO4), muriate of potash (KCl), and monopotassium phosphate (KH2PO4), were prepared as two solutions of (5 and 10) dS·m-1 salinity level, respectively, to investigate the influence on tomato (Lycopersicon esculentum Mill.) seedling growth. We also investigated the adaptability and survivability of treated tomato seedlings with high-salinity potassium (10 dS·m-1 KCl) to harsh environmental conditions (water deficit, low temperature, and storage conditions). Repeated addition of high-salinity level KCl, K2SO4, or KH2PO4 markedly decreased the dry matter of shoot and root, leaf area, and net assimilate rates (NAR) but increased the stem diameter of seedlings. Among the three sources, the relative growth rate of plant height (RGRH) was most sensitive to KCl addition; increasing salinity levels of KCl solution decreased the RGRH of seedlings. The compactness, which directly reflects the stocky growth index, increased in KCl or KH2PO4 treatments. After a week's water deficit, severely wilted seedlings were observed in control seedlings (untreated with KCl), but no wilted seedlings were observed in the KCl treated seedlings, and the relative water content (RWC) of the untreated seedlings significantly decreased by 23 %, while that of the pretreated seedlings only decreased by 8 %. The increase in ion leakage of KCl treated seedlings at low temperatures was less than that of untreated seedlings. Furthermore, there was far lower damage proportion on pretreated seedlings at (9, 12, and 15)℃ storage temperatures after 20 days, compared with on unpretreated seedlings. Our results suggest that high-salinity potassium fertilizer, especially KCl, is effective in preventing tomato seedling overgrowth, while it also improves tolerance.

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model (FAO Penman-Monteith 기준증발산식 민감도 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.285-299
    • /
    • 2023
  • Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.

Evaluation of Water Stress Using Canopy Temperature and Crop Water Stress Index (CWSI) in Peach Trees (복숭아나무의 엽온 및 작물수분스트레스 지수를 이용한 수분스트레스 평가)

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Do, Yun Soo;Song, Seung-Yeob;Kim, Minyoung;Choi, Yonghun;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • The study was performed to calculate canopy temperatures and crop water stress index (CWSI) of 2-year-old 'Yumi' peach trees using thermal infrared imaging under different soil water conditions, and to evaluate availability for water stress determination. Canopy temperatures showed similar daily variations to air temperatures and they were higher during the daytime than air temperatures. Canopy temperatures for 24 h were correlated highly to air temperatures (r2 =0.95), solar radiations (r2 =0.74), and relative humidity (r2 =-0.88). In addition, soil water potential showed a highly negative correlation to canopy temperatures (r2 =-0.57), temperature differences between leaf and air (TD) (r2 =-0.71), and CWSI (r2 =-0.72) during the daytime (11 to 16 h). CWSI for 24 h was highly related to canopy temperatures (r2 =0.90) and TD (r2 =0.92), whereas CWSI was not correlated to soil water potential (r2 =-0.27) for 24 h but related highly to water potential (r2 =-0.72) during the daytime (11 to 16 h). Correlation coefficients between CWSI (y) and soil water potential (x) were highest from 11 to 12 h and a regression equation was deduced as y = -0.0087x + 0.14. CWSI was calculated as 0.575 at -50 kPa, which soil water stress generally occurs. Thus our result suggests that this regression equation using thermal infrared imaging is useful to evaluate soil water stress of peach trees.