• Title/Summary/Keyword: Water Cement Ratio

Search Result 1,145, Processing Time 0.026 seconds

Strength Characteristics of Improved Dredged Clay for Urgent Recovery of Ground Subsidence (함몰지반 긴급복구를 위한 개량준설점토의 강도 특성)

  • Oh, Sewook;Baek, Seungju;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.31-38
    • /
    • 2019
  • Recently, there has been an increasing number of ground subsidence (sink-hole) in the downtown areas, and in such a case, it is important to minimize accidents and passages through prompt recovery. With respect to the present recovery method for ground subsidence, the methods of applying the back filling after excavating the ground subsidence or using the grouting injected materials to restore the ground are mostly used, but there has been few studies on materials used for recovering the ground subsidence. Therefore, in order to clarify the characteristics of back filling materials used in the ground subsidence, this study uses the environment-friendly hardening agent to improve the dredged clay, and then, the mixture ratio of hardening agent and mixture ratio of decomposed granite soil is changed to cure for 3, 7, 14 and 28 days to analyze the intensity characteristics of the unconfined compression, and it was compared with the unconfined compression intensity for the previously used cement, a hardening agent. In order to evaluate the characteristics of intensity on the back filling materials, the C.B.R test was carried out, and for the review on whether the back filling materials influence on corrosion of water and sewer pipes and others, the soil non-resistance test was carried out. As a result of the test, for the case of the recovery work of the ground subsidence that requires urgency, it is considered as prudent if the hardening agents of 12% are integrated to cure for 3 days or longer, and for not having the influence on the corrosion of the gas tube or water pipes, it is proposed to mix for 30% or more of the decomposed granite soil. Door model test were conducted To confirm the bearing capacity characteristics of the solidified layer.

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF

Studies on the Production and Property of Light Weight Concrete (경량(輕量)콘크리트의 제조(製造)와 그 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Seong Wan;Kang, Sin Up;Cho, Seong Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.310-323
    • /
    • 1983
  • To study the effect of foaming agent on the production and property of light weight concrete, the tests of compressive, tensile, bending strengths and absorption rates of mortar were done under the different mixing ratio with J, A and D foaming agents. The results obtained were summarized as follows : 1. The strengths were decreased in richer mixing ratio and more addition of foaming agent. The decrease of strengths was the greatest at the level of 0.75% of foaming agent. The decreasing rate of strengths was in order of J, A and D foaming agent. 2. At the mixing ratio of 1:1, ${\sigma}_{28}$ and 0.75% of foaming agent, the compressive strength was decreased up to 34.9% by D, 47.8% by A and 86.8% by J foaming agent, respectively, the tensile strength was decreased up to 14.8% by D, 20.2% by A and 77.9% by J foaming agent, respectively, bending strength was decreased up to 19.9% by D, 35.0% by A and 79.1% by J foaming agent, respectively. The decrease of compressive strength was more severe than that of tensile and bending strengths. 3. The absorption rates were increased in poorer mixing ratio and more addition of foaming agent. The absorption rate was significantly higher at the early stage of immersed water. The absorption rate was in order of J, A and D foaming agent. 4. The decrease of strengths was inevitable in cement-mortar with foaming agent, but the cement mortar with foaming agent has such the properties of the light-weight, lnsulation, Keeping-warmth, sound proof and fire-proof that if could be utilized to the constructions which need low strengths.

  • PDF

Watertightness and Durability Properties of Ultra Rapid Hardening Grout using Bottom-ash (잔골재 대체재로서 바텀애쉬를 이용한 초속경 그라우트재의 수밀성 및 내구특성)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Cho, Byoung-Young;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.102-109
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, watertightness and durability properties of URHM on temperature condition of construction field were performed. Test result, seepage quantity and water absorption coefficient regarding watertightness of URHM were as in the following : series II > series I. Seepage quantity for the standard condition were smaller than low temperatures. all specimens were satisfied below 20g as standards of seepage quantity on KS F 4042. Because of the decrease of unit cement content by to replacement of blast furnace slag, the neutrlization resistance for durability properties was reduced. The result of alkali resistance and acide resistance, compressive strengths for specimens soaked in calcium hydroxide solution of seriesI were lower than compressive strengths for specimens not soaked. On the other hand, the case of series II show that the deterioration of compressive strengths for specimens was not almost showed. Compressive strengths of specimens soaked were similar with specimens not soaked except series II-C in $5^{\circ}C$. Therefore, specimens using both blast furnace slag and bottom ash were good in alkali resistance and acide resistance.

  • PDF

Influence of Superplasticizers on Fluidity and Compressive Strength of Alkali Activated Slag Mortar (유동화제가 알칼리 활성 슬래그 모르타르의 유동 특성 및 압축 강도에 미치는 영향)

  • Kim, Dae-Wang;Oh, Sang-Hyuk;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • The cement industry brought very severe environment problems with massive carbon dioxide during its production. To solve this problem, attempts on Alkali-Activated Slag (AAS) concrete that perfectly substitutes industrial by-products such as ground granulated blast furnace slag (GGBFS) for cement are being actively made. AAS concrete is possible to have high strength development at room temperature, however, it is difficult to ensure the working time due to the fast setting time and the loss of workabillity because of the alkali reaction. In this study, the early age properties of alkali activated slag mortar are investigated to obtain the fundamental data for AAS concrete application to structural members. The water-binder ratio (W/B) was fixed at 0.35 and sodium hydroxide and waterglass as alkali activator was used. The compressive strength, the flow and the ultrasonic pulse velocity were measured according to the type of superplasticisers, which were naphthalene(N), lignin(L), melamine(M) and PC(P), up to a maximum of 2 percent by the mass of GGBFS. The results showed that adding melamine type of superplasticizer improved the fluidity of AAS mortar without decreasing the compressive strength, while naphthalene and polycarbonate type of superplasticizer had little effect on the fluidity of AAS mortar.

  • PDF

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

The Physical and Mechanical Properties of No-Fines Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량조골재(人工輕量粗骨材)를 사용(使用)한 무세골재(無細骨材) 경량(輕量)콘크리트의 물리(物理)·가학적(加學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Cho, Seung Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. Many studies were carried out on the lightweight aggregate concrete in foreign country in the latter half of the 19th century, therefore lightweight aggregate concrete has been used successfully for many years for structural members. The main purpose of the work described in this paper were to establish its physical and mechanical properties of no-fines lightweight concrete using synthetic lightweight coarse aggregates. Test results are summarized as follows ; The water-cement ratio was shown less than 33% in use synthetic lightweight coarse aggregates, unit weights of synthetic lightweight concrete was shown less than $1,800kg/m^3$ and compressive strength was higher than $200kg/m^2$. And the pulse velocity was more than 3,000m/sec. The relationship of compressive strength between unit weight and pulse velocity was shown to be approximately linear.

  • PDF

A Study on the Reinforcement Effect Analysis of Aging Agricultural Reservoir using Surface Stabilizer (표층안정재를 사용한 노후 농업용 저수지의 보강효과 분석에 관한 연구)

  • Kim, Jae-Hong;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.13-21
    • /
    • 2020
  • In Korea, small reservoirs have been constructed for the supply of agricultural water, but most of them have been over 50 years from the year of construction. Aging agricultural reservoirs are being investigated for serious defects such as leaks and movements in slope, which are very vulnerable to safety. Accordingly, grouting methods are used to reinforce aging agricultural reservoirs in Korea. However, cement used as a grouting injection material consumes natural resources and generates a large amount of greenhouse gases during production. In addition, there is a problem that sufficient reinforcement is not made due to various factors such as the injection amount, the compounding ratio, the injection pressure, and etc. Therefore, due to these problems, the development of new materials and methods that can replace the grouting method and cement is required. In order to solve these problems, this study conducted an laboratory test on the surface stabilizer used to secure the stability of road and rail slopes. In addition, the program was analyzed and the reinforcing effect was examined when the surface stabilizer was used as reinforcement material for aging agricultural reservoir. As a result of the laboratory test, when the surface stabilizer is mixed, the increase of cohesion is possible up to 9% and there is no change in the friction angle. The results of the program analysis showed that the 1.0m reinforcement of slopes increased the factor of safety by 1.4 times, making it possible to reinforce the aging agricultural reservoir using surface stabilizers. And as a reinforcement method, it was analyzed that it is most appropriate to reinforce the slope and the bottom of slope simultaneously.

Estimation of Critical Chloride Content for Corrosion of Reinforcing Steel in Concrete by Field Exposure Experiment (현장 폭로실험에 의한 콘크리트 중 철근의 부식 임계 염화물량 평가)

  • Yu, Kyung-Geun;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.585-588
    • /
    • 2008
  • To predict the service life of reinforced concrete structures exposed to chloride environment, quantitative measures of material properties such as the critical chloride content for corrosion in concrete and the diffusion coefficient of chloride ions of concrete and the surface chloride content of the concrete are essential. However, it should be noted that they are influenced by several factors such as concrete mix proportions, cement type, and environmental conditions, etc. Thus, the purpose of this research is to estimate more actually the critical chloride content for corrosion of the reinforcing steel in concrete by field exposure experiment. For this purpose, the prism concrete test specimens were made for water-cement(W/C) ratios of 31%, 42%, 50%, and 70%, and then the field exposure experiment for them were conducted at Youngduk of the east coast for about 3 years. During the test, corrosion monitoring by half cell potential method was carried out to detect the time to initiation of corrosion for test specimens and its chloride content was evaluated by breaking the concrete test specimens when corrosion of the reinforcing steel in concrete was perceived. It was observed from the test results that the critical chloride content for corrosion of reinforcing steel in concrete would be dependent on W/C ratio and almost irrespective of concrete cover.

  • PDF