• Title/Summary/Keyword: Wastewater Characteristics

Search Result 1,151, Processing Time 0.025 seconds

Treatment Characteristics of Synthetic Wastewater using Immobilized Nitrobacteria, Denitrobacteria (고정화 질산균, 탈질균을 이용한 합성폐수의 처리 특성)

  • Won, Chan-Hee;Heo, Young-Duck;Yun, Jae-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.63-70
    • /
    • 1997
  • The objectives of this study were to find out the optimum treatment conditions for removing nitrogen in a synthetic wastewater by using microorganisms immobilized with PVA-Freezing method. The samples used as influents to the laboratory scale treatment units were a synthetic wastewater. The experiments in this study were mainly directed to collect the data of nitrogen and organic matter removal efficiencies for the different hydraulic and internal recycle rates conditions, temperature and influent C/N ratios. The removal efficiencies of nitrogen and organic matters were investigated for the operating conditions of HRT 2~12hours, internal recycle rates 50~400%, temperatures $15{\sim}30^{\circ}C$ and C/N ratios 2.5~7.5. The adequate internal recycle rate for removing T-N and $BOD_5$ in the synthetic wastewater was found to be about 300% at the temperature of $30^{\circ}C$ when the ratio of carbon contents to the nitrogen (C/N) in the influent was around 5.5. Under these conditions, the final effluent concentrations of T-N and $BOD_5$ were 8.7 and 8.4 mg/l, respectively.

  • PDF

Rice Growth Response and Soil Quality by Domestic Wastewater Irrigation on Rice Paddy Field - Lysimeter experiment - (하수종말처리장 방류수를 논 관개용수로 처리시 벼 생육 및 토양환경 영향 조사 - 라이시미터 재배실험 -)

  • Cho, Jae-Young;Park, Seung-Woo;Son, Jae-Gwon;Park, Bong-Ju;Li, Long-Gen
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.2 s.31
    • /
    • pp.49-56
    • /
    • 2006
  • The application of domestic wastewater on rice paddies results in the accumulation of sodium(Na$^+$) to the soil. Excessive concentration of sodium may cause the deterioration of the physical characteristics of the soil, change in the osmosis of the soil, destruction of soil aggregates as well as ion toxicity due to sodium accumulation. Using domestic wastewater as irrigation water should be preceded by measures to prevent or control the soil salinization caused by sodium. Agricultural reuse of domestic wastewater were found not to cause serious problems with food safety due to heavy metals. However, pre-treatment using ultraviolet or ozone is recommended to reduce the number of bacteria and gem and for public health reasons. Using domestic wastewater has shown that reducing the standard application of chemical fertilizers by as much as 50% reduced the harvesting index by only 10%. This study has shown that it is feasible to reuse domestic wastewater on rice paddies. In order to facilitate the application, it is deemed necessary to establish wastewater treatment technologies in the future, to review criteria for recycling domestic wastewater for agricultural purposes such as conditions of soil and cropping system and to resolve conflicts with farmers and public health issues.

An Application of CDM Project for Greenhouse Gas Reduction Activities in the Wastewater Treatment Systems (하수처리시스템 온실가스 저감활동에 대한 CDM 사업 적용에 관한 연구)

  • Kwak, In-Ho;Hwang, Young-Woo;Jo, Hyun-Jung;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.319-332
    • /
    • 2010
  • In general, wastewater treatment systems consume high-energy consumption depending on operation characteristics of the facilities. Therefore, greenhouse gas(GHG) reduction activities that are application of digestion gas, induction of renewable energy etc. are conducted to reduce energy consumption and to increase energy independence ratio. In this study, GHG reduction in wastewater treatment system identified, searched application of Clean Development mechanism(CDM) approved methodology. If the methodologies apply to GHG reduction activities such as application of digestion gas, heat pump system using the wastewater as heat source, hydropower using the methodology determined CDM applicability, otherwise through several assumptions calculated expectable GHG reduction emissions and determined CDM applicability. As a result, the order of calculated GHG reduction emission showed that collected and energy generation of digestion gas is 66,775 $tCO_2$/yr, gas engine cogeneration system is 8,182 $tCO_2$/yr, heat pump system using the wastewater as a heat source is 72,715 $tCO_2$/yr, and hydropower is 561 $tCO_2$/yr. Consequently, the order of calculated Certified Emission Reductions(CERs) benefit showed that heat pump system using the wastewater, as a heat source is 1,381 million won/yr was estimated as the highest, followed by a collected and energy generation of digestion gas is 1,268 million won/yr.

Effect of Foulant Characteristics on Membrane Fouling Index (오염물질의 특성이 막오염 지수에 미치는 영향)

  • Park, Chanhyuk;Kim, Hana;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.775-780
    • /
    • 2005
  • This study was performed to investigate the effect of foulant characteristics on Membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). A linear relationship was found relating the fouling index (both SDI and MFI) on particle concentration, but fouling index values were nonlinearly (exponentially) with increasing organic concentration. When organic matter was the primary cause of fouling, the MFI was not accurately predicted due to internal fouling such as pore adsorption. The fouling index was determined mainly by particle characteristics when both particle and organic coexisted in the feed water. This observation was attributed to lessening of organic pore adsorption by particle cake layer formed on the membrane surface. Bench-scale actual fouling experiments demonstrated that permeate flux declines much faster with feed water containing particles than organic matters although fouling potential predicted by SDI values were identical, indicating that the accurate prediction of fouling potential requires the development of fouling index reflecting different foulant characteristics.

Evaluation of Phosphorus and Nitrogen Delivery Characteristics of Chogang Stream Sediments (초강천의 퇴적물 분석을 이용한 총인 및 질소의 유달 특성 평가)

  • Kang, Seon-Hong;Seo, Dong-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.99-109
    • /
    • 1997
  • To estimate the nutrients delivery characteristics of Chogang stream to Keum River, sediment and soil characteristics were analyzed in the stream and in the stream bank. Along the stream, soil samples from river sediment were collected and tested monthly for phosphorus and nitrogen concentrations. Nitrogen concentration in the sediment is much lower than that of soil in the river bank especially in summer presumably due to the high desorption characteristics of nitrogen by the increasing rainfall energy during summer. Instead, the concentrations of phosphorus were similar for the sediment and the soil in the river bank due to the strong adsorption characteristics of phosphorus. Batch tests were performed to evaluate the desorption potential of the sediments. Universal Soil Loss Equation (USLE) was applied to quantify soil erosion in each watershed due to rainfall. It was estimated that approximately 25% of total phosphorus by mass basis could be released from the sediment if the water was disturbed vigorously. The mass load of nitrogen and phosphorus into the Chogang Stream from the watershed were evaluated from the USLE and release ratio of phosphorus.

  • PDF

Characteristics of wastewater treatment of sewage mixed with industrial wastewater (공장폐수가 혼합된 하수처리장의 하수처리 특성)

  • Ahn, June-Shu;Park, Wook-Keun;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3341-3352
    • /
    • 2011
  • In this study, characteristics of wastewater treatment of sewage intermittently mixed with industrial wastewater is examined by investigating the operational status of each unit operation and measuring water quality. The bioreactor operating condition was measured for MLSS concentration 2,000~3,000 mg/L, HRT 5.3~16.3 hour, SRT 2.8~66.6 day, and SVI frequently showed the value above 200 which was higher than the optimal range of 50~150. It is thought that the sludge is not in suitable condition for sedimentation caused by the incoming industrial wastewater. When industrial wastewater is come into the system, MLDO inside of bioreactor rapidly increased, rate of nitrification is steeply decreased, and Pin floc. is spilled in the secondary clarifier. In the observance of microorganism showed that various bacterial floc. and ciliata were found as well as actinomycetes and filamentous bacteria(Sphaeotilus) which is known to cause bulking. Efficiency of each unit operation was fairly good in average. However, efficiency of the bioreactor treatment showed high fluctuation by unstable operating condition by intermittently incoming industrial wastewater.

The Treatment of Textile Wastewater by Electrocoagulation Process (전해응집공정을 이용한 염색폐수의 처리)

  • 이용택;한승우;조영개;이현문;김태근;손인식;양병수
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.359-363
    • /
    • 2000
  • This research studied the characteristics and applicability of electrocoagulation using aluminium electrode for the color and COD removal in textile wastewater. Electrocoagulation reactor used two different electrode, Fe and Al, since in the general chemical wastewater treatment, aluminium and ferrous salts were used as coagulants. Aluminium electrode showed higher removal efficiency of color and COD than ferrous electrode did. The COD and color removal efficiency improved at the 0.192A/$dm^2$ current density. Thus, the electrocoagulation process with bipolar aluminium electrode showed better efficiency in the decolorization and COD removal rate of textile wastewater effluent than custom coagulants did.

  • PDF

Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment

  • Liu, Xiaojing;Wu, Jinling;Hou, Li-an;Wang, Jianlong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.581-588
    • /
    • 2020
  • The membrane fouling is an important problem for FO applied to the radioactive wastewater treatment. The FO fouling characteristics for simulated radioactive wastewater treatment was investigated. On-line cleaning by deionized (DI) water and external cleaning by ultrasound and HCl were applied for the fouled membrane. The effectiveness and foulant removing amount by each-step cleaning were evaluated. The membrane fouling was divided into three stages. Co(II), Sr(II), Cs(I), Na(I) were all found deposited on both active and support layers of the membrane surface, resulting in membrane surface became rougher and more hydrophobic, which increased membrane resistance. On-line cleaning by DI water recovered the water flux to 69%. HCl removed more foulants than ultrasound.

Organic Characteristic of Piggery Wastewater and Kinetic Estimation in Biofilm Reactor (생물막 반응조에서 돈사폐수의 유기물 특성 및 동력학계수 산정)

  • Rim, Jay-Myoung;Han, Dong-Joon;Kwon, Jae-Hyuk
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.51-60
    • /
    • 1996
  • This research was performed for the fundamental data using a advanced treatment process of piggery wastewater. Characteristics of influent wastewater was divided with various methods in fixed biofilm batch reasctor. Fractons of organic were divided into readily biodegradable soluble COD(Ss), slowly biodegradable COD(Xs), nonbiodegradable soluble COD($S_I$), and nonbiodegradable suspended COD($X_I$). Experimental results were summerized as following : i) biodegradable organics fraction in piggery wastewater was about 88.1 percent, and fraction of readily biodegradable soluble COD was about 66.1 percent. ii) Fractions of nonbiodegradable soluble COD was 11~12 percent, and soluble inert COD by metabolism was producted about 6~8 percent. iii) Active biomass fraction of attached biofilm was about 54.7 percent, and substrate utilization rate and maximum specific growth rate of heterotrophs were $8.315d^{-1}$ and $3.823d^{-1}$, respectively.

  • PDF

The Treatment of Organic Wastewater using Thermophilic Oxic Process (고온호기발효공법을 이용한 유기성폐수의 처리)

  • 유순주;류재근;서윤수;도삼유평
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 1995
  • Most of small- scale livestock facility have difficulties to treat organic wastewater by activated sludge process as distinguished feces and urine. The organic wastewater discharged have characteristics of slurry, high concentration of BOD, 55 etc. This study was performed to estimate suitable condition for the application of packing materials, air flow, pollutant load and so on as important parameter to treat organic wastewater by thermopile oxlc process. As a result obtained at this experiments the most suitable condition for BOD load, air flow indicate 3.0kg · m$^{-3}$ day$^{-1}$,50 ∼ 100L· min$^{-1}$ m$^{-3}$, respectively, and we knew that it was necessary to add waste contained high calories to degrade about 80% of pollutant among waste- water. It showed that plastic material can be used as packing media because it can be provided as inhabitation for microorganism owing to intensity of material and characteristic of keeping moisture.

  • PDF