• 제목/요약/키워드: Waste seaweeds

검색결과 9건 처리시간 0.026초

미역폐기물로부터 알기네이트의 추출 및 디알기네이트의 이용 (Extraction of Alginate from Waste-Brown Seaweed and Use of Dealginate)

  • 박권필;김태희;김영숙
    • 한국환경과학회지
    • /
    • 제12권1호
    • /
    • pp.63-68
    • /
    • 2003
  • Effective alginate extraction from waste-brown seaweeds was studied. The waste-brown seaweeds almost consist of stems of seaweeds. Alginate could be obtained from the stems as well as leaves of seaweed. Ultrasonic vibration(47kHz) facilitated filtering step in the alginate extraction process. Among various alkalies for alginate extraction, $NaHCO_3$ was most appropriate concerning use of dealginates. The yield of alginate extraction using $NaHCO_3$ 2wt% solution was 19.3% at $60^{\circ}C$. The dealginates from $NaHCO_3$-extraction process have been found most suitable food for red-worms.

홍조류, 갈조류, 녹조류를 이용한 바이오에탄올 생산 및 폐 해조류 슬러리의 중금속 생물흡착 (Ethanol Production from Red, Brown and Green Seaweeds and Biosorption of Heavy Metals by Waste Seaweed Slurry from Ethanol Production)

  • 선우인영;라채훈;권성진;허지희;김예진;김지우;신지호;안은주;조유경;김성구
    • KSBB Journal
    • /
    • 제29권6호
    • /
    • pp.414-420
    • /
    • 2014
  • The seaweeds with high carbohydrate ratio Gelidium amansii, Saccharina japonica and Enteromorpha intestinalis were used as red, brown, and green seaweeds, respectively. Thermal acid hydrolysis, enzymatic saccharification and fermentation were carried out using those seaweeds to produce ethanol. The ethanol concentrations from red, brown and green seaweed were 14.8 g/L, 11.6 g/L and 9.9 g/L, respectively. After the production of ethanol, the seaweeds were reused to absorb heavy metal. The maximum biosorption ratio was Cu(II) (89.6%), Cr(III) (82.9%), Ni(II) (66.1%). Cu(II) had the highest affinity with 3 waste seaweeds. Red seaweed was verified the most effective substrates to both process.

미역 폐기물 및 미역폐기물 유도체에 의한 중금속이온의 생물흡착 (Biosorption of Heavy-metal Ions by Waste Brown Seaweed and Their Derivatives)

  • 박권필;김태희;김영숙;차왕석;우명우
    • 한국환경과학회지
    • /
    • 제10권2호
    • /
    • pp.153-158
    • /
    • 2001
  • The biosorption abilities of different parts of waste brown seaweeds and their derivatives to remove heavy metals (Cd, Zn, Pb, Cu, Fe, Ni, Mn) from waste were evaluated. The two parts of waste brown seaweeds (Undaria pinnatifida) were stems and sporophyls, and the brown seaweed derivatives were alginic fibers, active carbon added alginate(AC-alginate) and dealginate. The abilities of the sporophyls to adsorb the heavy metal ions were higher than those of stems, and those of alginates were slightly higher than those of dealginate in single ion solution. With decreasing the size of biosorbents, the velocity and the amount of adsorption increased. The abilities of alginate to remove the heavy metal ions increased in multi-ion solutions by adding active carbon to alginate. The selectivity of these biosorbents(alginate, AC-alginate) to lead ion was highest and to manganese ion was lowest.

  • PDF

미생물을 이용한 미역폐기물의 저장 및 알긴산염 저분자화 (Storage of Waste-Brown Seaweed and Degradation of Alginate Using Microorganism)

  • 안상준;김영숙;박권필
    • 한국환경과학회지
    • /
    • 제13권3호
    • /
    • pp.313-318
    • /
    • 2004
  • We studied a storage of waste-brown seaweed at room temperature and degradation of alginate in seaweed by microorganism DS-02. The seaweeds, mixed with 5.0 wt% DS-02 and sealed in vinyl package without any other treatment, could be stored longer than 1 year without spoilage at room temperature. During the storage process, the alginate of seaweed was decomposed by enzyme of DS-02 and the molecular weight of alginate decreased to about 1/10 of initial quantity. DS-02 growed as fast as it had maximum weight after 24 hour culture and it's enzyme had a maximum activity of alginate degradation at $40^{\circ}C.$ The seaweed sample became particles in DS-02 culture solution and the M. W of alginate decreased to about 1/10 of initial value after 24 hour decomposition. The effect of alginate degradation with DS-02 was similar to that of degradation with 3.0 M HCI solution for 24 hour.

Degradation Characteristics of A Novel Multi-Enzyme-Possessing Bacillus licheniformis TK3-Y Strain for the Treatment of High-Salinity Fish Wastes and Green Seaweeds

  • Kang, Kyeong Hwan;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제18권4호
    • /
    • pp.349-357
    • /
    • 2015
  • To reutilize fisheries waste, we isolated a bacterial strain from a coastal area located in Busan. It was identified as Bacillus licheniformis TK3-Y. Using plate assay and 500-mL flask experiments, we found that the isolate simultaneously possessed cellulolytic, proteolytic, and lipolytic activities with salt tolerance. 10% (v/v) inoculums, were used to examine the biodegradation characteristics of the TK3-Y strain on carboxymethylcellulose, skim milk, and olive oil media. The optimum conditions for pH, temperature, agitation speed, and NaCl concentration on each 1% substrate were 6, $50^{\circ}C$, 180 rpm, and 17.5%, respectively. Under optimal conditions, the TK3-Y strain showed 1.07 U/mL cellulolytic, 1,426 U/mL proteolytic, and 6.45 U/mL lipolytic activities. Each enzyme was stable within a range of 17.5-35% NaCl. Therefore, the salt tolerance ability of strain TK3-Y was superior to other related strains. In degradation of a mixed medium containing all three substrates, both the cellulolytic and proteolytic activities were somewhat lower than those on each single substrate, while the lipolytic activity was somewhat higher. From the above results, the TK3-Y strain appears to be a good candidate for use in the efficient treatment of fisheries waste in which components are not collected separately.

Recent Trends in the Biosorption of Heavy Metals: A Review

  • Sag, Yesim;Kutsal, Tulin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권6호
    • /
    • pp.376-385
    • /
    • 2001
  • Considerable attention has been focused in recent years upon the field of biosorption for the removal of metal ions from aqeous effluents. Compared to other technologies, the advan-tages of biosortption are the high purity of the treated waste water and the cheap raw material. Really, the first major challenge for the biosorption field is to select the most promising types of biomass. Abundant biomass types either generated as a waste by-product of large-scale industrial fermentations particularly fungi or certain metal-binding seaweeds have gained importance in re-cent years due to their natural occurrence, low cost and, of course good performance in metal biosorption. Industrial solutions commonly contain multimetal systems or several organic and in organic substances that form complexes with metals at relatively high stability forming a very complex environment. When several components are present, interference and competition phe-nomena for sorption sites occur and lead to a more complex mathematical formulation of the process. The most optimal configuration for continuous flow-biosorption seems to the packed-bed column which gets gradually from the feed to the solution exit end. Owing to the com-petitive ion exchange taking place in the column, one or more of the metals present even at trace levels may overshot the acceptable limit in the column effluent before the breakthrough point of the trargeted metal. Occurrence of 'overshoot's and impact on havey metal removal has not been analyzed enough. New trends in biosorption are discussed in this review.

  • PDF

Behavioral analysis of Pacific abalone, Haliotis discus hannai, reveals its feeding preference and attraction potential for brown alga, Sargassum horneri

  • Chae-Eun Yu;Yeo-Reum Kim;Gyeong-Eon Noh;Jong-Myoung Kim
    • Fisheries and Aquatic Sciences
    • /
    • 제26권5호
    • /
    • pp.355-365
    • /
    • 2023
  • The Pacific abalone, Haliotis discus hannai, is a highly valued and industrially important aquaculture species with growing demands of the expanding abalone aquaculture industry. To explore the feasibility of using the brown alga, Sargassum horneri, as a potential substitute for abalone feed, it is important to identify the feed preference and attractant effect of S. horneri on Pacific abalone. Our experiments indicated that the feeding-associated movement of abalone could be detected using a video tracking system under indirect illumination with dim red light. To further analyze the attraction potentials of various test materials, preference analysis was performed using Avicel-coated glass plates with ground powders of various seaweeds (e.g., S. horneri, Saccharina japonica, and Undaria pinnatifida) and commercial abalone feed, together with coffee waste. Heat map analysis indicated greater attraction by the kelp S. japonica than by S. horneri and commercial feed, which showed similar preference levels. Feeding preference based on the area of Avicel eaten by abalone showed a significant preference for U. pinnatifida over S. horneri (feeding area: 68.6 ± 20.1% vs. 37.5 ± 22.4%, p < 0.05). Additionally, the feeding area was significantly greater for plates with S. japonica than for plates with S. horneri (44.0 ± 16.6% vs. 22.6 ± 15.4%, p < 0.05). There was no significant difference in feeding area between commercial feed and S. horneri (31.7 ± 11.6% vs. 31.6 ± 20.2%, p > 0.05). The methanol extracts attracted abalone in the following order: U. pinnatifida > S. horneri > S. japonica > commercial feed > coffee waste. To determine the attractive effects of the components of methanol extracts, mixtures of methanol extracts of commercial feed with increasing amounts of S. horneri were examined. The results showed a significant increase in feeding preference upon addition of S. horneri up to 50% and 75%, suggesting its potential for use as an appetite-enhancing feed additive. This study identified conditions that can be successfully used to monitor the movement of Pacific abalone; the results of preference analysis confirmed that abalone exhibited similar attraction and feeding preference for S. horneri, compared with commercial feed.

농촌 거주 70-80대 노인의 주거 및 식생활 환경 변화추이 2001-2010 -40대와 비교- (Changes in Residential and Dietary Environments for People in Their Seventies and Eighties in Comparison to Those in Their Forties in Rural Area (2001-2010))

  • 이승교;황정임;원향례
    • 한국지역사회생활과학회지
    • /
    • 제25권3호
    • /
    • pp.401-415
    • /
    • 2014
  • To prepare for the changes in the future, this study considered people in their seventies and eighties in rural areas in the last decade. Based on a survey of rural life by the Rural Development Administration, all factors were analyzed using SAS ver. 9.3. The rate of rice farming decreased, and vegetable-cultivation increased from 8.4% in 2001 to and 26.6% in 2008 for people in their seventies and eighties. The number of family members decreased to 1.96 in 2010 from 2.04 in 2001, and annual income increased by KRW 20-29 million for those in their seventies and eighties, whereas it was more than KRW 30 million for those in their forties. Bathing with warm water increased to 88.9% from 69.8%, and household waste treated by self-incineration decreased from 86.4% to 40.0% in the last decade. Separate collection spread since 2008. Food waste disposal and the burial (46.0%) showed had for people in their seventies and eighties, and animal feed increased (50.7%) for those in their forties at 2001. The separate collection increased by 39.6% in 2010 for those in their seventies and eighties and by 53.5% for those in their forties(p<0.05). The manufacture of jang and kimchi showed were little annual changes for people in their seventies and eighties. Food storage processing was higher for those in their forties. For those in their seventies and eighties, food group intake over the 2004-2010 period increased from 3.3 times a week to 4.2 times a week for protein foods and from 4.9 times a week to 5.5 times a week for vegetables. There was no change in fruits, milk, and seaweeds for those in their seventies and eighties, but there was an increase for those in their forties. The results suggest the continued increase in the manufacture of jang and kimchi and protein and vegetable intake for those in their seventies and eighties. Some direction to welfare, mechanized rice planting and living with neighbors together would be continued with good nutrition for elderly residents.

해조류 바이오매스로부터 Lactic acid를 제조하는 방법에 관한 연구 (A Study on the Method of Manufacturing Lactic Acid from Seaweed Biomass)

  • 이학래;고의석;심원철;김종서;김재능
    • 한국포장학회지
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2022
  • 최근 전 세계적으로 코로나바이러스감염증-19(COVID-19)의 확산됨에 따라 비대면 서비스가 성장하고 이와 동시에 플라스틱 폐기물 문제가 더욱 심화되고 있다. 동시에 탄소중립과 지속가능한 순환경제와 같은 친환경 정책이 전 세계적으로 추진되고 있고 친환경 제품에 대한 높은 수요로 인해 패키징 업계에서도 PLA, PBAT 등을 사용한 친환경 포장재 개발과 새로운 비즈니스 모델 창출을 시도하고 있다. 본 연구에서는 이러한 환경적 이슈에 우리나라 남해와 제주도 연안에서 매년 대량으로 발생하여 여러 형태의 문제를 야기하고 있는 구멍갈파래(Ulva australis)를 새로운 대체 에너지 원료로서 활용하고자 묽은 산 전처리, 효소 당화, 발효 공정을 거쳐 해조류 바이오매스 유래 Lactic acid를 생산하고자 하였다. 일반적으로 해조류는 종, 수확장소, 시기 등에 따라 탄수화물의 함량과 당의 구성이 다양하며, Cellulose, Alginate, Mannan, Xylan 등의 다당류로 구성되어 있고 리그닌 성분을 함유하고 있지 않아 곡물·목질계 자원보다 유용한 특징이 있다. 구멍갈파래를 구성하고 있는 복합 다당체는 한가지 공정만으로 높은 추출 수율을 기대하기 어려우나 본 연구에서 제시된 묽은 산 및 효소 당화의 융합 공정은 구멍갈파래가 함유하고 있는 대부분의 당 추출이 가능하기 때문에 상업화 규모의 생산 공정 구축 시 높은 Lactic acid 생산 수율을 기대할 수 있을 것으로 사료된다.