DOI QR코드

DOI QR Code

해조류 바이오매스로부터 Lactic acid를 제조하는 방법에 관한 연구

A Study on the Method of Manufacturing Lactic Acid from Seaweed Biomass

  • 투고 : 2022.02.28
  • 심사 : 2022.04.20
  • 발행 : 2022.04.30

초록

최근 전 세계적으로 코로나바이러스감염증-19(COVID-19)의 확산됨에 따라 비대면 서비스가 성장하고 이와 동시에 플라스틱 폐기물 문제가 더욱 심화되고 있다. 동시에 탄소중립과 지속가능한 순환경제와 같은 친환경 정책이 전 세계적으로 추진되고 있고 친환경 제품에 대한 높은 수요로 인해 패키징 업계에서도 PLA, PBAT 등을 사용한 친환경 포장재 개발과 새로운 비즈니스 모델 창출을 시도하고 있다. 본 연구에서는 이러한 환경적 이슈에 우리나라 남해와 제주도 연안에서 매년 대량으로 발생하여 여러 형태의 문제를 야기하고 있는 구멍갈파래(Ulva australis)를 새로운 대체 에너지 원료로서 활용하고자 묽은 산 전처리, 효소 당화, 발효 공정을 거쳐 해조류 바이오매스 유래 Lactic acid를 생산하고자 하였다. 일반적으로 해조류는 종, 수확장소, 시기 등에 따라 탄수화물의 함량과 당의 구성이 다양하며, Cellulose, Alginate, Mannan, Xylan 등의 다당류로 구성되어 있고 리그닌 성분을 함유하고 있지 않아 곡물·목질계 자원보다 유용한 특징이 있다. 구멍갈파래를 구성하고 있는 복합 다당체는 한가지 공정만으로 높은 추출 수율을 기대하기 어려우나 본 연구에서 제시된 묽은 산 및 효소 당화의 융합 공정은 구멍갈파래가 함유하고 있는 대부분의 당 추출이 가능하기 때문에 상업화 규모의 생산 공정 구축 시 높은 Lactic acid 생산 수율을 기대할 수 있을 것으로 사료된다.

With the spread of COVID-19 worldwide, non-face-to-face services have grown rapidly, but at the same time, the problem of plastic waste is getting worse. Accordingly, eco-friendly policies such as carbon neutrality and sustainable circular economy are being promoted worldwide. Due to the high demand for eco-friendly products, the packaging industry is trying to develop eco-friendly packaging materials using PLA and PBAT and create new business models. On the other hand, Ulva australis occurs in large quantities in the southern seas of Korea and off the coast of Jeju Island, causing marine environmental problems. In this study, lactic acid was produced through dilute acid pretreatment, enzymatic saccharification, and fermentation processes to utilize Ulva australis as a new alternative energy raw material. In general, seaweeds vary in carbohydrate content and sugar composition depending on the species, harvest location, and time. Seaweed is mainly composed of polysaccharides such as cellulose, alginate, mannan, and xylan, but does not contain lignin. It is difficult to expect high extraction yield of the complex polysaccharide constituting Ulva australis with only one process. However, the fusion process of dilute acid and enzymatic saccharification presented in this study can extract most of the sugars contained in Ulva australis. Therefore, the fusion process is considered to be able to expect high lactic acid production yield when a commercial-scale production process is established.

키워드

과제정보

본 논문은 농업기술실용화재단 농업실용화기술R&D지원사업(과제번호 : PJ016352)의 지원에 의해 이루어진 것임.

참고문헌

  1. KOSTAT. 2021. Online shopping trend in February. Online shopping trend survey.
  2. National Logistics Information Center. 2020. The trend of volume and sales in the domestic parcel delivery market. https://nlic.go.kr/nlic/parcelServiceSales.action.
  3. Ministry of Environment. 2020. Changes in the amount of plastic waste generated nationwide.
  4. Korea Policy Briefing. 2021. 2050 Carbon neutrality. https://www.korea.kr/special/policyCurationView.do?newsId=148881562
  5. Seok, S.W. 2021. Consumption status and revitalization plan of green product in the private sector. Consumer Policy Trend, 110.
  6. 윤영주. 2021. ESG 앞세운 기업 증가...가치소비 주목, 신 경영전략 모색 한창. http://www.businessreport.kr/news/articleView.html?idxno=26478
  7. Kloareg, B. and Quatrano, R. S. 1988. Structure of the Cell Walls of Marine Algae and Ecophysiological Functions of the Matrix Polysaccharides. Oceanogr. Mar. Biol. Annu. Rev., 26 :259-315.
  8. Heo, S.J., Park, E.J., Lee, K.W. and Jeon, Y.J. 2005. Antioxidant Activities of Enzymatic Extracts from Brown Seaweeds. Bioresour. Technol., 96: 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  9. Ito, K. and Hori, K. 1989. Seaweed: Chemical Composition and Potential Food Uses. Food Rev. Int., 5: 101-144. https://doi.org/10.1080/87559128909540845
  10. National Institute of Fisheries Science. Ulva australis. https://www.nifs.go.kr/frcenter/species/?_p=species_view&mf_tax_id=MF0010566
  11. Kim, D.Y. 2020. Continuous war, Is "Ulva australis" okay? http://www.jjunews.org/news/articleView.html?idxno=3155
  12. Min, T.I. Practical meaning of lactic acid and pyruvate metabolism by lactic acid bacteria in food and beverage fermentation. www.reseat.re.kr.
  13. Monteiro, P., Lomartire, S., Cotas, J., Pacheco, D., Marques, J.C., Pereira, L. and Goncalves, A.M.M. 2021. Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes 2021, 9, 1953. https://doi.org/10.3390/pr9111953.
  14. KOSTAT. 2020.Fishing Production Trend Survey. The trend of production by seaweed item in Korea.
  15. A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton. 2005. Determination of Extractives in Biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42619.
  16. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2008. Determination of Structural Carbohy-drates and Lignin in Biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42618.
  17. M. Selig, N. Weiss, and Y. Ji. 2008. Enzymatic Saccharification of Lignocellulosic Biomass. Laboratory Analytical Procedure, NREL/TP-510-42629.
  18. Kim, J.M. and Ha, S.H. 2015. Hydrothermal Pretreatment of Ulva pertusa Kjellaman using microwave irradiation for enhanced enzymatic hydrolysis. Korea Chem. Eng. Res. 53(5): 570-575. https://doi.org/10.9713/kcer.2015.53.5.570
  19. Jung, S.R., Kim, S.J., Kim, G.Y. and Kim, Richard. 2012. Characteristics of Enzymatic Hydrolysis of Ulva pertusa kjellman by Various Pretreatments. J. Korean Society of Urban Environment, 12(1): 1-7.
  20. Hwang, M.J., Lee, S.Y., Kim, S.M. and Lee, S.B. 2011. Fermentation of Seaweed Sugars by Lactobacillus Species and the Potential of Seaweed as a Biomass Feedstock. J. Biotechnology and Bioprocess Engineering 16: 1231-1239. https://doi.org/10.1007/s12257-011-0278-1