• Title/Summary/Keyword: Waste incinerators

Search Result 97, Processing Time 0.024 seconds

The Characteristics of Mercury Emission from Municipal Solid Waste (MSW) Incinerator Stack (폐기물 소각시설 배가스에서의 수은 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.378-387
    • /
    • 2004
  • This study was carried to investigate the emission characteristics of mercury from domestic and industrial MSW (municipal solid waste) incinerator stacks. The mercury concentration levels of flue gas from 32 MSW incinerators stacks selected were above the criteria level ($5{\mu}g/S\;m^3$). MSWI facilities exceeding the criteria levels in Korea are due to the poor units comparison of combustion chamber(CC)-cyclone(CY)-stack. So, the mercury from MSW incinerators stack were suspected to contaminate the natural system unless the MSW incinerators were properly controlled. Mean-while, the relationship between mercury concentration and temperature of flue gas in MSW incinerator stacks were examined at two temperature ranges (Group A : $29.85{\sim}327.63^{\circ}C$, Group B : $446.9{\sim}848.15^{\circ}C$). The mercury concentration in flue gas with high temperature range was higher than that of flue gas with low temperature rage. This mean that the temperature of flue gas plays an important role in mercury control in MSW incinerator. The emission characteristics oi mercury was also evaluated by using the correlation matrix between the mercury and NOx, $PM_{10}$, moisture (MO.) at both low temperature and high temperature flue gas ranges. The mercury concentration was mainly affected by NOx, $PM_{10}$. moisture (MO.) at low temperature range, while the mercury concentration at high temperature flue gas was mainly affected by NOx, moisture (MO.). From these results, it was suggested that the temperature of cooling system and the air pollution control device should be properly regulated in order to control mercury of flue gas in MSWI incinerator.

Emission Characteristics of PMs and Heavy Metals from Industrial Hazardous Waste Incinerators (산업 폐기물 소각시설의 입자상 물질 및 중금속의 배출특성)

  • 유종익;이성준;김기헌;장하나;석정희;석광설;홍지형;김병화;서용칠
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.213-221
    • /
    • 2002
  • The emission characteristics of particulate matter (PMs) and heavy metals from hazardous industrial wast incinerators were investigated. The particle size distribution (PSD) of PM-10 showed different patterns for two tripes of incinerators; stoker and rotary kiln. However both types showed bimodal form at inlet of air pollution control devices (APCD) and each peak (mode) is located at smaller than 1 ${\mu}{\textrm}{m}$ and near 10 ${\mu}{\textrm}{m}$. It could explain the growth of fine PM by nucleation/coagulation/condensation of metal vapors for fine mode. The PSD of PM-10 after APCD was also influenced by APCD types that had different collection mechanism, and both electrostatic precipitator and bag filter showed less collection efficiency for particles ranged from 0.2 to 0.4 ${\mu}{\textrm}{m}$ and led to a mode in the range of 0.2 to 0.8 ${\mu}{\textrm}{m}$. However the hag filter showed two modes of PSD, while the electrostatic precipitator had one peak. The PMs and heavy metals emission factors, the representative value of emission quantity for sources, for tested facilities were developed. The emission factor of uncontrolled total PM and PM-10 were 14.7 and 7.05 kg/ton waste, respectively. The emission factors from this study were a little bit different with those from US EPA AP-42. It may thus be appropriate to use these results in the course of developing national emission factors.

The Estimation of Emission Factor of N2O and CH4 by Measurement from Stacks in the Waste Incinerators and Cement Production Plants

  • Choi, Sang-Min;Im, Jong-Kwon;Hong, Ji-Hyoung;Lee, Sue-Been;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.217-226
    • /
    • 2007
  • The purpose of this study is to estimate the emission factor of $non-CO_2$ global warming gases such as $N_2O$ and $CH_4$ by measuring concentrations from stacks of waste incinerators and cement production plants. Based on the established monitoring methods, $N_2O$ concentration measured from stacks in incinerator were between 0.62 and $40.60\;ppm_v$ (ave. $11.50\;ppm_v$). The concentration of $N_2O$ was dependent on the incinerator types. However, the concentrations of $CH_4$ gas were between 2.65 and $5.68\;ppm_v$ (ave. $4.22\;ppm_v$), and did not show the dependency on the incinerator types. In the cement production plant, the concentration ranges of $N_2O$ from the stack were from 6.90 to $10.80\;ppm_v$ (ave. $8.60\;ppm_v$), and $CH_4$ were between 1.80 and $2.20\;ppm_v$ (ave. $2.60\;ppm_v$). Using measured concentrations, the emission amounts of $N_2O$ and $CH_4$ from stacks per year were calculated. The results were is 4.2 ton $N_2O/yr$ in the incinerators, and 53.7 ton $N_2O/yr$ in the cement facilities. The big difference is from the flow rate of flue gas in the cement facilities compared to the incinerators. By the same reason, the $CH_4$ emission amounts in cement plant and incinerator was found to be 339 ton $CO_2/yr$ and 34.1 ton $CO_2/yr$, respectively. Finally, the emission factor of $N_2O$ in the incinerators were calculated using the measured concentration and the amount of incinerated wastes, and was $42.5\sim799.1\;g/ton$ in kiln and stoker type, $11.9\sim79.9\;g/ton$ in stoker type, 90.1 ton/g in rotary kiln type, 174.9 g/ton in fluidized bed type, and 63.8 g/ton in grate type, respectively. Also, the emission factors of $CH_4$ were found to 65.2-91.3 g/ton in kiln/stoker type, 73.9-122 g/ton in stoker type, 109.5 g/ton rotary kiln, and 26.1 g/ton in fluidized bed type. This result indicates that the emission factor in incinerators is strongly dependent on the incinerator types, and matched with result of IPCC (International Panel on Climate Change) guideline.

A Study on the Effectiveness of Continuous CO2 Emission Monitoring in a Waste Incinerator (폐기물 소각시설의 이산화탄소 (CO2) 연속측정 실효성에 관한 연구)

  • Oh, Seung Hwan;Kang, Lim Suk;Jung, Dong Hee
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.273-281
    • /
    • 2018
  • The purpose of this study is to consider the effectiveness of continuous $CO_2$ emission monitoring in waste incinerator. To prevent global warming, many countries are trying to reduce $CO_2$, the main greenhouse gas. Currently, Korea is implementing an emission trading scheme to reduce $CO_2$, and waste incinerators are included in this scheme as major $CO_2$ sources. However, when using waste incinerators, $CO_2$ is discharged during incineration of various types of wastes, therefore it is very difficult to calculate the amount of emissions according to IPCC guidelines. In addition, the estimation of $CO_2$ emissions by calculation is known to lack of accuracy comparing with actual emissions. Currently, Korea is operating CleanSYS, which enables continuous measurement of gases emitted into the atmosphere. Therefore, it is possible to estimate the $CO_2$ emissions of waste incineration facilities. The IPCC, which published $CO_2$ emission calculation guidelines, recognizes that direct measurement of emission is a more advanced method in cases of various $CO_2$ emission sources such as a waste incineration facility. Also, Korean emission trading scheme guidelines allow estimation of $CO_2$ emissions by continuous measurement at waste incineration facilities. Therefore, this study considers the effectiveness of a direct measurement method by comparing the results of CleanSYS with the calculation method suggested by the IPCC guidelines.

Optimization of Incinerator Controllers using Artificial Neural Networks

  • Mackin, Kenneth J.;Fukushima, Ryutaro;Fujiyoshi, Makoto
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.334-337
    • /
    • 2003
  • The emission of dioxins from waste incinerators is one of the most important environmental problems today, It is known that optimization of waste incinerator controllers is a very difficult problem due to the complex nature of the dynamic environment within the incinerator. In this paper, we propose applying artificial neural networks to waste incinerator controllers. We show that artificial neural networks can project the emission of dioxins with a fair degree of accuracy.

  • PDF

The Nimby Syndrome and Basic Plan for Waste Treatment Facilities in 1994 (님비와 폐기물처리시설 설치 방향)

  • 신현국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.59-64
    • /
    • 1994
  • In order to democractically resolve the "not-in-my-backyard" (Nimby syndrome) which is widespread in Korea, the policy of the Ministry of Environmnt(MOE) is that the MOE is willing to negotiate with local inhabitants who refuse to allow the establishment of waste treatment facilities, and that such facilities will be safety and effectively constructed and managed. According to this policy, the MOE has developed a basic plan to construct 255 incinerators by the year 2001, and establish 42 sanitary landfill sites and 5 specific waste treatment facilities in 1994.s in 1994.

  • PDF

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

A Study on the Facility for Domestic Waste Problems of high Temperatured Combustion and the Alteration of heating surface (폐기물소각로의 고온 연소에 따른 문제와 연소실 전열면 변경에 대한 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.60-67
    • /
    • 2010
  • Korea's large-scale incinerating facilities of domestic waste were built in the late 1980's. It was found that most of the incinerators were designed during the period and even the ones constructed afterwards have been built without any changes or modifications. However, the nature of waste fed into incinerators is undergoing a radical change due to government policies on waste collection, which is upheld by a research into changes in the heating value of domestic wastes. As a result, refractories and stokers are being damaged in many of the facilities due to overheating. On the other hand, the formation of clinkers on boilers' heating surface, which curbs he at transfer, results in problems such as a fall in used heating value and a rise in the temperature of combustion chambers. Methods are being deployed to resolve the problems-such as spraying water on piles of waste, incinerating food waste by mixing together what has been separately collected, spraying water on combustion chambers, etc. Such actions are not a fundamental solution, nor redesigning and rebuilding incineration facilities is cost-effective. This research seeks to develop a fundamental solution to address the situation.

An Investigation for Air Pollutants Emitted from Small-Scale Incinerators in Highway Service Area (고속도로 휴게소의 소형소각로에서 배출되는 대기오염물질 조사)

  • Jang, Young-Kee;Choi, Sang-Jin;Kim, Kwan;Hong, Min-Sun;Choi, Join-In;Moon, Su-Ho;Kim, Soon-Tae;Kim, Seung-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.539-546
    • /
    • 2002
  • The physicochemical properties of solid wastes generated from seven highway service areas, four branch offices, and one construction site were analyzed in concert with air pollutants including heavy metals emitted from near-by small-scale incinerators. The amount of solid wastes generated from highway areas has been increasing with recent increases in the number of highways and passengers. Twelve incinerators examined in this study generally had capacity smaller than 100 kg/hr, most of which were equipped with cyclone for dust removal. It was seen that the concentrations of the gas-phase air pollutants (e.g., SO$_2$, NO$_{x}$, HCl and H$_2$S) were above the acceptable emission standards except one or two sites. CO concentrations at all incinerators were also higher due to incomplete combustion. In addition, particulate matters showed concentration six times higher at their maximum. The results of heavy metal analysis showed that the concentrations of Cu, Cd, and Ni satisfied the emission standards. whereas Pb at one site and Zn at five sites exceeded the standards. Cr measurement results indicated that 9 of 12 incinerators had higher values than the standard; especially one branch office showed nine times higher than normal concentration. In order to satisfy more stringent emission standards in the near future, it is necessary to install air pollution control system and to develop an intensified management plan.n.