• Title/Summary/Keyword: Waste heat recovery efficiency

Search Result 116, Processing Time 0.024 seconds

Effect of Waste Heat Recovery Condensing Boiler with Condensed Water Recirculation Function (응축수 순환이 폐열회수 응축형 보일러 성능에 미치는 영향)

  • Keum, Kuk Bin;Kim, Sooik;Yu, Byeong-Hun;Lee, Chang Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.201-204
    • /
    • 2015
  • Recently, energy excessive consumption and environmental pollution are the social issued. The most efficient way to solve both energy excessive consumption and environmental pollution is existing combustion system improved. This study was part of the assume and commercial used existing waste heat recovery condensing boiler to low emission performance for exhaust gas recirculation(EGR) and thermal efficiency rise by applying the condensed water recirculation(CWR) conducted. The researchers applied the EGR and CWR develop a new concept for the condensed water recirculation waste heat recovery condensing boiler. Waste heat recovery condensing boiler applied to the condensed water recirculation thermal efficiency of the same conditions was increased by about 4.8~5.5% and pollution emission also decreased.

  • PDF

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

Research on Performance of Large Rotor-type Heat Recovery Exchanger using CFD Analysis on Surface Corrugation (요철형상의 CFD 해석을 통한 대용량 로타형 폐열회수열교환기 성능에 관한 연구)

  • Kim, Dong-Gyu;Ha, Byeong-Yong;Kim, Kun-Oh;Kum, Jong-Soo;Jeong, Seok-Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.875-880
    • /
    • 2012
  • The field of the large volume heat exchanger for wasted heat recovery ventilation system is being expanded enormously seeing as the fact that the quantity of reducing energies are huge due to the large volume heat exchanger for wasted heat recovery system at large buildings and factories, which consume large amount of energies while it has been arising huge amount of losses in Korea because of the lack of technology. To develop large volume waste heat recovery heat exchanger, rotor type heat exchanger was simulated for the surface corrugation. Based on the simulation results produced $30,000m^3/h$ grade waste heat recovery, heat exchanger was performed for the actual experiment. In addition, performance tests exceed the capacity of a large waste heat recovery heat exchanger performance test methods proposed.

An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles (자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

Establishing the Models for Optimized Design of Water Injection in Boilers with Waste-heat-recovery System (가습연소 폐열회수 보일러의 물분사 설계모델 구축에 관한 연구)

  • Shin, Jaehun;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2021
  • In order to improve the overall efficiency and meet the emission regulations of boiler systems, the heat exchanging methods between inlet air and exhaust gas have been used in boiler systems, named as the waste-heat-recovery condensing boiler. Recently, to further improve the overall efficiency and to reduce the NOx emission simultaneously, the concept of the water injection into the inlet air is introduced. This study suggests the models for the optimized design parameters of water injection for waste-heat-recovery condensing boilers and performs the analysis regarding the water injection amount and droplet sizes for the optimized water injection. At first, the required amount of the water injection was estimated based on the 1st law of thermodynamics under the assumption of complete evaporation of the injected water. The result showed that the higher the inlet air and exhaust gas temperature into the heat exchanger, the larger the amount of injected water is needed. Then two droplet evaporation models were proposed to analyze the required droplet size of water injection for full evaporation of injected water: one is the evaporation model of droplet in the inlet air and the other is that on the wall of heat exchanger. Based on the results of two models, the maximum allowable droplet sizes of water injection were estimated in various boiler operating conditions with respect to the residence time of the inlet air in the heat exchanger.

A Study on the Way to Improve Efficiency of a Waste Heat Recovery System for an Automotive Engine (자동차 엔진용 폐열 회수 시스템의 효율 향상방안에 관한 연구)

  • Cha, Won-Sim;Choi, Kyung-Wook;Kim, Ki-Bum;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.76-81
    • /
    • 2012
  • In recent, there are tremendous efforts to apply co-generation concept in automobile to improve its thermal efficiency. The co-generation is basically a simple Rankine Cycle that uses the waste heat from the engine exhaust and coolant for heat source. In spite of developed nano technology and advance material science, the bulky co-generation system is still a big concern in automotive application. Therefore, the system should be effectively designed not to add much weight on the vehicle, but the capacity of the waste heat recovery should be still large. With such a goal in mind, the system thermal efficiency was investigated in terms of the system operation condition and working fluid. This paper provides a direction for the optimal design of the automotive co-generation system.

An Experimental Study on Heat Transfer Performance of Fluidized Bed Heat Exchanger for Heat Recovery from Multi-Heat Sources (다중열원 열회수형 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.57-62
    • /
    • 2017
  • The heat transfer performance of a multi-heat-source fluidized bed heat exchanger was analyzed. The fluidized bed heat exchanger examined in this study can simultaneously recover the waste heat from gas, water vapor, and hot water. The effects of waste water flow rate, gas flow rate, and cooling water flow rate were examined to find their experimental correlations with the heat transfer coefficient. A computer program using the correlations was developed in this study to predict the thermal performance of the fluidized bed heat exchanger. The calculated heat transfer rates of gas, water vapor, waste water, and cooling water were compared with the measured values. It was found that the error of the calculated values was less than 12%.

A Study on the Engineering Design for 20kW-Grade Waste Gas Heat Recovery (20kW급 폐열회수 시스템 공정 설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • This study is collects design data through the process design of the organic Rankine cycle, which can produce 20kW of electric power through the recovery of waste heat. In this study, the simulation was conducted by using APSEN HYSYS in order to make the model for the process design of the 20kW class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, with the water steam used as the cooling water for the cooler and the refrigerant R245fa in the cycle. In Case 1 and Case 2, it was expected and found that the cycle efficiency was 10.6% and that 36.86kw was produced, considering the margin of 84% of 20kW. In Case 3 and Case 4, it was expected and found from the simulation that the cycle efficiency was 12% and that 30.0kw was produced, considering the margin of 84% of 20kW.