• Title/Summary/Keyword: Waste ferrite

Search Result 41, Processing Time 0.025 seconds

A Study on the Manufacture of $\alpha$-Fe$_2$O (Major Material of Ferrite) by Waste Pickling Liquor of Steel (강철의 산세폐액으로부터 Ferrite의 주원료인 Fe$_3$O$_3$의 제조에 관한 연구)

  • 최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 1976
  • The properties vary with quality of ferric-oxide that is major material of ferrites. In this point of view, a manufacturing method of pure and homogeneous fine ferric oxide is very important. The characters of this study are as follows: 1) Ferric oxide was made from waste pickling liquor of steel. 2) The crude ferric-oxide that is made by roasting the pickling liquor was dissolved in 20% HCI solution and then produced ferric chloride is purified by ethyl ether extraction. 3) The methanol solution of purified ferric chloride was sprayed into the refractory tube with compressed air and propane gas and then ignited leading to the ferric-oxide powder. 4) The produced oxide powder was introduced to the scrubber type vessel throught cooling system in order to collect the powder. 5) Crystalline phase of the powder was identified by X-ray diffraction and particle size, crystalline shape of the powder were investigated by settling method and electron microscope and the effects of concentration of ferric chloride in methanol on grain size were discussed. Results were obtained as fellows: 1) Total impurity in the ferric oxide produced from waste pickling liquor was 3.7%. 2) The solubilityof crude ferric oxide that was made from waste pickling liquor in HCI solution increased with the HCI concentration and reached to saturation range at 15% HCI concentration. 3) Extraction of FeCl3 increased with HCI concentration which is solvent. 4) Alpha ferric oxide obtained was very fine crystalline particles, the mean crystalline grain increased with the concentration of ferric chloride, and mean grain size distributed from 3.5$\mu$(at 0.5mole/l) to 0.5$\mu$(at 0.05mole/l).

  • PDF

ESTIMATION OF THE BEHAVIORS OF SELENIUM IN THE NEAR FIELD OF REPOSITORY

  • Kim, Seung-Soo;Min, Jae-Ho;Baik, Min-Hoon;Kim, Gye-Nam;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.945-952
    • /
    • 2012
  • The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

Cobalt ferrite nanotubes and porous nanorods for dye removal

  • Girgis, E.;Adel, D.;Tharwat, C.;Attallah, O.;Rao, K.V.
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • $CoFe_2O_4$ nanotubes and porous nanorods were prepared via a simple one-pot template-free hydrothermal method and were used as an adsorbent for the removal of dye contaminants from water. The properties of the synthesized nanotubes and porous nanorods were characterized by electron diffraction, transmission electron microscopy and x-ray powder diffraction. The Adsorption characteristics of the $CoFe_2O_4$ were examined using polar red dye and the factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. The overall trend followed an increase of the sorption capacity reaching a maximum of 95% dye removal at low pHs of 2-4. An enhancement in the removal efficiency was also noticed upon increasing the contact time between dye molecules and $CoFe_2O_4$ nanoparticles. The final results indicated that the $CoFe_2O_4$ nanotubes and porous nanorods can be considered as an efficient low cost and recyclable adsorbent for dye removal with efficiency 94% for Cobalt ferrite nanotubes and for Cobalt ferrite porous nanorods equals 95%.

Magnetic Properties of NiZn-ferrite Synthesized from The Refined Waste Iron Oxide Catalyst (정제된 산화철 폐촉매로부터 합성된 NiZn-페라이트의 자기적 특성)

  • Park, Sang-Il;Lee, Hyo-Sook;Choi, Hyun-Seok;Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • NiZn-ferrites were synthesized from the waste catalysts. which were by product of styrene monomer process and buried underground as an industrial wastes, and their magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900℃ and sintering at 1325℃ for 5 hours. The initial permeabilities were measured and reflection losses were calculated from S-parameters for the composition of Ni/sub x/Zn/sub 1-x/Fe₂O₄(x=0.36, 0.50, 0.66) and (Ni/sub 0.5/Zn/sub 0.5)/sub 1-y/Fe/sub 2+y/O₄(y=-0.02, 0, 0.02).

Corrosion and mechanical properties of hot-rolled 0.5%Gd-0.8%B-stainless steels in a simulated nuclear waste treatment solution

  • Jung, Moo Young;Baik, Youl;Choi, Yong;Sohn, D.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.207-213
    • /
    • 2019
  • Corrosion and mechanical behavior of the hot-rolled 0.5%Gd-0.8%B-stainless steel to develop a spent nuclear fuel storage material was studied in a simulated nuclear waste treatment condition with rolling condition. The austenite and ferrite phases of the 0.5%Gd-0.8%B-stainless steels are about 88:12. The average austenite and ferrite grain size of the plane normal to rolling, transverse and normal directions of the hot rolled specimens are about 5.08, 8.94, 19.35, 23.29, 26.00 and 18.11 [${\mu}m$], respectively. The average micro-hardness of the as-cast specimen is 200.4 Hv, whereas, that of the hot-rolled specimen are 220.1, 204.7 and 203.5 [$H_v$] for the plane normal to RD, TD and ND, respectively. The UTS, YS and elongation of the as-cast and the hot-rolled specimen are 699, 484 [MPa], 34.0%, and 654, 432 [MPa] and 33.3%, respectively. The passivity was observed both for the as-cast and the hot rolled specimens in a simulated nuclear waste solution. The corrosion potential and corrosion rate of the as-casted specimens are $-343[mV_{SHE}]$ and $3.26{\times}10^{-7}[A/cm^2]$, whereas, those of the hot rolled specimens with normal to ND, RD and TD are -630, -512 and -620 [$mV_{SHE}$] and $6.12{\times}10^{-7}$, $1.04{\times}10^{-6}$ and $6.92{\times}10^{-7}[A/cm^2]$, respectively. Corrosion tends to occur preferentially Cr and B rich area.

Purification of Waste Acid and Manufacture of Complex Oxide and Mn-Ferrite Powder by Co-Roasting Process (폐산의 정제 기술 및 분무 배소법에 의한 복합 산화물과 Mn-Ferrite 분말의 제조)

  • 유재근;김정석;민병구;성낙일
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.64-75
    • /
    • 1998
  • The purpose of this study is to produce high putity composite powder composed of Fe-oxide, Mn-oxide and Mn-ferrite having superior homogencity in composition and particle size distribution by co-roasting process. Binary component metal (Fe, Mn) chloride solutions were produced by dissolving mill scale and ferro-mangancse alloy in hydrochloric acid. These chloride solutions contained the impurities such as SiO$_{2}$, P, Al, Ca and Na, which were originated from the Fe/Mn source materials. The neutralization and polymeric coagulant method were adoped to refine the hydrochloric liquor. When pH is far below the isoelectric point (pH 2-3), the SiO$_{2}$ was the most effectively reduced element, while other impurities remained unchanged. By increasing pH above 3, most of the impurities could be reduced effectively due to the coprecipitation reaction. The polymeric coagulants such as poly vinyl alcohol, resin amine and ammonium molybdate were found to have no effect on the spray roaster designed by the authors. The produced oxide powders were confirmed to be mixtures of Fe-oxide, Mn-oxide and mn-ferrite. the powders were homogeneously mixed and the particle size increased sleeply with increasing co-roasting temperature.

  • PDF

Fabrication of Nano-Sized Complex Oxide Powder from Waste Solution Produced during Shadow Mask Processing by Spray Pyrolysis Process (새도우마스크 제조 공정중 발생되는 폐액으로부터 분무열분해 공정에 의한 복합산화물 나노 분말 제조)

  • Yu Jae-Keun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.38-46
    • /
    • 2003
  • In this study, nano-sized Ni-ferrite and $Fe_2$$O_3$+NiO powder was fabricated by spray pyrolysis process in the condition of 1kg/$\textrm{cm}^2$ air pressure using the Fe-Ni complex waste acid solution generated during the manufacturing process of shadow mask. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the concentration of raw material solution and the nozzle tip size on the properties of powder were studied. As the reaction temperature increased from $800 ^{\circ}C$ to $1100^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the structure of the powder gradually became solid, yet the distribution of the particle size appeared more irregular. Along with the increase of the reaction temperature, the fraction of the Ni-ferrite phase were also on the rise, and the surface area of the powder was greatly reduced. As the concentration of Fe in solution increased from 20g/l to 200g/l, the average particle size of the powder gradually increased from 30 nm to 60 nm, while the distribution of the particle size appeared more irregular. Along with the increase of the concentration of solution, tie fraction of the Ni-ferrite phase was on the rise, and the surface area of the powder was greatly reduced. Along with the increase of the nozzle tip size, the distribution of the particle size appeared more irregular, yet the average particle size of the powder showed no significant change. As the nozzle tip size increased from 1 mm to 2 mm, the fraction of the Ni-ferrite phase showed no significant change, while the surface area of the powder slightly reduced. As the nozzle tip size increased to 3 mm and 5 mm, the fraction of the Ni-ferrite phase gradually reduced, and the surface area of the powder slightly increased.

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

High Purity Ferric Oxide : Origin of Impurities and IROX-NKK Purification Process

  • Maeda, T.
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.21-23
    • /
    • 2002
  • A new process based on the co-precipitation method was developed fer removing harmful impurities during Mn-Zn ferrite production such as $SiO_2$ and P from waste pickle liquor. By this process a final result of less than 100 ppm of $SiO_2$ and less than 10 ppm of P content in the ferric oxide is easily attained. Though Ca cannot be removed by this process, water rinsing of the ferric oxide is effective fer reducing Ca content to less than 100 pm. For further purification, the origins of each impurity must be investigated and then taken away.

Recycling of Fe-Ni Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 Fe-Ni 계 폐액의 리싸이클링)

  • 유재근
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.95-97
    • /
    • 2003
  • 본 연구에서는 새도우마스크 제조공정에서 발생되는 Fe-Ni 계 폐산 용액에 Ni 성분을 용해시킨 복합 산용액을 원료용액으로 사용하여 분무열분해법에 의해 입도분포 및 조성이 균일하며, 입자형태가 구상이면서 평균입도가 100nm 이하인 Ni-ferrite 나노 분말을 제조하며 원료용액의 유입속도, nozzle tip 크기 및 공기압력의 반응조건 변화에 따른 생성분말의 특성 변화를 파악하였다.

  • PDF