• Title/Summary/Keyword: Waste battery

Search Result 111, Processing Time 0.035 seconds

An Address Autoconfiguration Algorithm of Mobile IPv6 through Internet Gateway in Ad-Hoc networks (Mobile IPv6기반 Ad-Hoc 네트워크에서의 Internet Gateway를 통한 IP주소 자동 할당 방법)

  • Choi, Jung-Woo;Park, Sung-Han
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1067-1070
    • /
    • 2005
  • In this paper, we propose the address allocation algorithm in hybrid Mobile ad-hoc network (MANET). Most of proposed address autoconfiguration algorithms are node based. Node based address autoconfiguration algorithms are inefficient. Because the node based algorithms waste bandwidth and consume much battery in mobile ad-hoc networks. we present the address allocation algorithm using internet gateway based address autoconfiguration by modifing the IPv6 stateless address autoconfiguration protocol. We use the network simulator NS-2 in our experiments. The simulation result shows reducing network traffic and saving battery.

  • PDF

Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method (저농도 황산 용액 및 2-스텝 침출 방법을 이용한 폐LiFePO4 양극재로부터 효율적인 리튬의 선택적 회수)

  • Dae-Weon Kim;Hee-Seon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • The recovery of valuable metals from waste lithium-based secondary batteries is very important in terms of efficiently utilizing earth's limited number of resources. Currently, the cathode material of a LiFePO4 battery, a type of battery which is widely used in automobiles, contains approximately 5% lithium. After use, the lithium in these batteries can be used again as a raw material for new batteries through lithium recycling. In this study, low-concentration sulfuric acid, a commonly used type of inorganic acid, was used to selectively leach the lithium contained in a waste LiFePO4 cathode material powder. In addition, in order to compare and analyze the leaching efficiency and separation efficiency of each component, the optimalleaching conditions were derived by applying a two-step leaching process with pulp density being used as a variable during leaching. When leaching with pulp density as a variable, it was confirmed that at a pulp density of 200 g/L, the separation efficiency was approximately 200 times higher than at other pulp densities because the iron and phosphorus components were hardly leached at this pulp density. Accordingly, the pulp density of 200 g/L was used tooptimize the leaching conditions for the selective leaching and recovery of lithium.

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode (리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구)

  • Kim, Tae Gyun;Cho, Jin Hyuk;Pham-Cong, De;Jeon, Injun;Hwang, Jin Hyun;Kim, Kyoung Hwa;Cho, Chae Ryong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1315-1323
    • /
    • 2018
  • We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.

Thermogravimetric Analysis of Black Mass Components from Li-ion Battery (폐이차전지 블랙 매스(Black Mass) 구성 성분의 열중량 특성 분석)

  • Kwanho Kim;Kwangsuk You;Minkyu Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.25-33
    • /
    • 2023
  • With the growth of the battery industry, a rapid increase in the production and usage of lithium-ion batteries is expected, and in line with this, much interest and effort is being paid to recycle waste batteries, including production scrap. Although much effort has been made to recycle cathode material, much attention has begun to recycle anode material to secure the supply chain of critical minerals and improve recycling rates. The proximate analysis that measures the content of coal can be used to analyze graphite in anode material, but it cannot accurately analyze due to the interaction between the components of the black mass. Therefore, in this study, thermogravimetric analysis of each component of black mass was measured as the temperature increased up to 950℃ in an oxygen atmosphere. As a result, in the case of cathode material, no change in mass was measured other than a mass reduction of about 5% due to oxidation of the binder and conductive material. In the case of anode material, except for a mass reduction of about 2% due to the binder, all mass reduction were due to the graphite(fixed carbon). In addition, metal conductors (Al, Cu) were oxidized and their mass increased as the temperature increased. Thermal analysis results of mixed samples of cathode/anode show similar results to the predictive values that can be calculated through each cathode and anode analysis results.

Analysis of the Thermoelectric Devices' Power Generation Performance for Utilizing the Waste Heat of LED Tunnel Lighting Module (LED터널등 모듈의 폐열활용을 위한 열전소자의 발전 성능 분석)

  • Jeong, Ji-Young;Her, In-Sung;Lee, Se-Il;Kim, Myeong-Ho;Yu, Young Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, we propose the LED(Light-Emitting-Diode) emergency lighting in a tunnel by using the thermoelectric devices. To achieve high generated power, thermoelectric device should be have high Seebeck coefficient and small contact area. Also, we reveal that a moderate heatsink required for high generated power. From the waste heat of LED tunnel lighting module (25W), the generated power was 0.062W by thermoelectric device, and it could illuminate for 1hour after charge the battery of emergency lighting during about 101hours.

Future Research Direction through Reviewing Recent Trends in Environment-friendly Vehicles Research (Part 2) (친환경자동차의 연구동향 분석을 통한 미래 발전방향 제안 (Part 2))

  • Ahn, Kyu Hwan;Ko, Jang Hyok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.151-155
    • /
    • 2022
  • In this paper, we analyze the current research technology trends through the literature reviews of technical outlines of electric vehicles and hydrogen fuel cell vehicles, domestic and overseas policy trends, etc. After analyzing the literature, we found out while the re-use and recycling of waste batteries and the in-wheel motor systems are essential areas for the development of electric vehicles and hydrogen fuel cell vehicles, the related research is not quite sufficient, so the direction for further research is proposed at the conclusion.

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

Implementation of an Electrode Positioning System to Improve the Accuracy and Reliability of the Secondary Battery Stacking Process (2차 전지 적층 공정의 정확성과 신뢰성 향상을 위한 전극 위치결정 시스템 구현)

  • Lee, June-Hwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.219-225
    • /
    • 2021
  • As for the battery package method, a prismatic package method is preferred for stability reasons, but it is rapidly expanding due to the stability verification of a pouch type package. The pouch type using the lamination process has an advantage of high battery energy density because it can reduce space waste, but has a disadvantage of low productivity. Therefore, in this paper, by extracting edge detection algorithm precision, pattern algorithm precision, and motion controller recall rate by improving backlight lighting fixtures to minimize light diffusion, securing standards for stereo camera position relationship displacement monitoring, and securing standards for lens release monitoring. We propose to implement a system that ensures accuracy and reliability in positioning. As a result of the experiment, the proposed system shows an average error range of 0.032mm for edge detection, 0.02mm for pattern algorithm, and 0.014mm for motion controller, thus ensuring the accuracy and reliability of the positioning mechanism.

Analysis of Patents on the Recycling Technologies for Waste Batteries (폐전지 재활용 관련 기술의 특허 동향분석)

  • Kang Tae-Won;Jeong Jinki;Lee Jae-Chun;Sohn Jeong-Soo;Kang Kyung-Seok
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.44-59
    • /
    • 2005
  • In this paper the world wide patents on the recycling of used batteries were inspected. The trend and direction of on-going and future technologies on this matter were analyzed. The range of search was limited in the open patents and in DB of U.S.A.(USPTO, DLPHION), Japan(PAJ), Europe(EPO), and Korea(KIPRIS). For the search condition the keyword, battery, batteries, electric cell, patent, and recycling, and IPC classification were used. The total of 2,490 cases was found at the first search stage, then, through the 2 steps of filtering processes the total of 871 cases was selected for the final analysis. These 871 cases were classified by countries, companies, and technologies between the year 1971 and the you 2000.

A Study on Pretreatment and Acid Leaching for Wet Recycling of Waste Industrial Ni-Cd Secondary Battery (산업용 니켈-카드뮴 폐 이차전지 습식 재활용을 위한 전처리 및 산 침출에 대한 연구)

  • Jung, Soo-Hoon;Kim, Dae-Weon;Park, Il-Jeong;Choi, Joong-Yup;Yang, Dae-Hoon;Choi, Hee-Lack
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.67-76
    • /
    • 2017
  • In order to efficiently recycle waste industrial nickel-cadmium batteries, anodic and cathodic materials were crushed by a cut mill and classified by sieves. We used wet magnetic separation method for eliminating iron components from the crushed powders. In addition, the acid leaching test for the obtained anode and cathode powders was carried out under various conditions by means of the wet process. At the optimum leaching conditions with 2.0 M $H_2SO_4$ at $90^{\circ}C$, 15 wt $H_2O_2$ and L/S=20 for 3 hours, the leaching efficiency of nickel and cadmium was 99%, respectively.