• Title/Summary/Keyword: Waste acid

Search Result 955, Processing Time 0.024 seconds

Study on Bio-H2 Production from Synthetic Food Waste and Activated Sludge from Industrial Waste Water Processes using Dark-fermentation (산업공정의 폐수처리에서 발생된 폐활성슬러지 및 인공음식폐기물을 이용한 생물학적 수소생성에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Mi-Hyung;Lee, Myoung-Joo;Hwang, Sun-Jin;Eom, Hyoung-Choon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.703-712
    • /
    • 2010
  • This study performed to extract operation factors of major organic wastes, which were food wastes and waste activated sludge generated in industries in order to use them as a substrate for bio-H2 production. According to the results of experimental analysis for hydrogen production capacity by various organic concentrations, the hydrogen production yield was the highest at 80 g/L, and the efficiency was improved by the pretreatment of waste activated sludge (acid treatment, alkali treatment). Hydrogen production efficiency was improved by mixing food wastes and waste activated sludge if waste activated sludge was below than 30%, however, it was decreased when it was more than 50%. The impacts of heavy metals on the hydrogen production shows that the inhibition level depends on the concentration of Cr, Zn, and Cu, Fe was able to enhance the hydrogen production.

Basic Studies on the Treatment and Recovery of Silver Contained in Waste Photographic Fixing Solution Using D2EHPA as an Extractant (D2EHPA를 추출제로 한 사진폐액 함유 은의 처리 및 회수에 대한 기초연구)

  • Chung, Won-Ju;Kim, Dong-Su;Lee, Hwa-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.288-293
    • /
    • 2006
  • Basic investigations have been carried out for the solvent extraction of silver contained in the waste photographic fixing solution using D2EHPA as an extractant. Extraction experiments were conducted using artificial waste solution which was made by dissolving $AgNO_3$ in distilled water along with actual waste fixing solution. For artificial waste solution, the extraction of silver was found to occur very rapidly at the initial stage of extraction. In addition, more silver was extracted as the volumetric ratio between aqueous phase and organic phase was decreased. The volumetric ratio of organic extractant to diluent was also taken as an influential variable and the extracted amount of silver was observed to decrease with temperature. The characteristics of silver extraction for actual fixing solution was generally similar to that for artificial waste solution. Regarding the kinetic analysis, the extraction of silver contained in the actual solution was observed to follow a first order reaction.

Ultrasonic treatment of waste livestock blood for enhancement of solubilization

  • Jeon, Yong-Woo;Kim, Hyeon-Jeong;Shin, Myung-Seop;Pak, Seo-Hyun
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • The aim of this study was to recycle the waste livestock blood as one of the waste biomass by turning proteins, the main constituent of blood, into effective biological resources like amino acid. Ultrasonic technology was applied to solubilize the proteins in the waste livestock blood. And of the multiple ultrasonic frequencies tested, 20 kHz was confirmed to yield the highest solubilization rate. The optimum pretreatment conditions were determined to be 30-min treatment at an ultrasonic irradiation density of 0.5 W/mL, which resulted in a solubilization rate of 96.01%. Also, a gel permeation chromatography (GPC) confirmed that a large amount of proteins were solubilized, and in an experiment where ultrasonic treatment was applied to kill bacteria, death rates of general bacteria and total coliforms were found to be reduced by 99.93% and 100%, respectively. Based on these results, ultrasonic technology was confirmed to be a crucial part of treating and recycling the proteins in waste livestock blood.

Development of Dye Natural Batik Based on Fiber Coconut Waste and Leaf Avocado through Extraction Method in Supporting Green Business

  • Agung UTAMA;Anita MUSTIKASARI;Nur KHOLIFAH
    • Asian Journal of Business Environment
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2024
  • Purpose: The development of natural batik dyes based on a combination of coconut fiber waste and avocado leaves using the extraction method is important to support the green economy and reduce chemical waste in Indonesia. Research design, data and methodology: The research explores the use of coconut fiber and avocado leaf waste extraction as a natural batik dye and conducts market testing to assess consumer satisfaction. Results: Indonesian batik exports are growing, but synthetic dye practices are causing a decline in demand. To address this, natural dyes are being explored, including coconut fiber waste and avocado leaf waste. Conclusion: Test results from washing at 40 degrees Celsius in terms of color changes and color staining, from sweat in terms of changes in acid color and changes in base color, to sunlight in terms of color fastness value, to heat to iron in terms of color change and color staining shows a value of 3-4 (quite good) and 4-5 (good), meaning that coconut fiber and avocado leaves waste can be used as natural batik dye.

Supercritical Water Hydrolysis of Waste Logs after Oak Mushroom Production (초임계수를 이용한 표고버섯 골목의 가수분해)

  • Koo, Bon-Wook;Lee, Jae-Won;Choi, Joon-Weon;Choi, Don-Ha;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.81-95
    • /
    • 2006
  • In order to investigate the possibility of waste logs after oak mushroom production as a source of an alternative energy and to obtain the fundamental data of supercritical water hydrolysis that has been paid attention as a new saccharification method of lignocellulosics, supercritical water hydrolysis of normal log woods (Quercus acutissima Carruth) and waste logs was carried out. With the increase of reaction time and temperature, the color of the degradation products has been dark and the degradation rate and the crystalline index increased. However the increase of reaction pressure affected the color of the degradation products and the degradation rate at only low reaction temperature. In the early stage of the reaction, the degradation of hemicellulose was progressed, while in the late stage, the cellulose was degraded. The increase of reaction time and reaction temperature (less than $415^{\circ}C$) improved the sugar yield, while at high temperature(more than $415^{\circ}C$), the sugar yield was decreased. Based on the result of the sugar yield, the optimal hydrolysis condition of Q. acutissima Carruth by supercritical water was determined to be $415^{\circ}C$, 60 seconds and 230 pressure bar with the sugar yield of 2.68% (w/w). At the optimal condition, the supercritical water hydrolysis of waste logs after the mushroom production was carried out and the sugar yield was increased to 358% (w/w). The major degradation products of waste logs by supercritical water hydrolysis were 1,1'-oxybis-benzene and 1,2-benzendicarboxylic acid by the GC-MS analysis. At the reaction condition with low degradation rate, the fatty acids such as pentadecanoic acid, 14-methyl-heptadecanoic acid were identified. With the increase of the reaction temperature and time, the amounts of phenol and benzene were increased, but the reaction pressure did not affect the kinds of degradation products. Holocellulose content was 60.6~79.2% in the water insoluble residue and the monosaccharide yield of the water insoluble residue was 49.2~675% by the acid hydrolysis. The monosaccharide yield of water-soluble portion was increased largely by the second hydrolysis using dilute acid.

Alternative Method for the Treatment of Chemical Wastes Containing Uranium (우라늄함유 화학폐수의 적정처리 기술)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.179-186
    • /
    • 2006
  • Chemical wastes are generated from nuclear facilities and R&D laboratories, but the uranium concentration in the final dried cake is evaluated into 11.2 Bq/g, which exceeds the exemption level of 10 Bq/g for each U isotopes, so the cake is categorized into a radioactive waste. Acid dissolution was applied to extract uranium from the waste sludge, and uranium adsorption on the dissolved solution was experimented by using IRN-77 and Diphosil bead. A large amount of resin was required to get above 80% of uranium removal, which was found to be due to a large amount of metal ions simultaneously dissolved from the precipitates with uranium. As an alternative method, acid dissolution is applied to the dewatered wet cake of the sludge, and the natural evaporation method is adopted for the dissolved solution. The uranium concentration of the dissolved solution was estimated to be 6.97E-01 Bq/ml, and the specific activity of the final waste sheets is evaluated to be 4.3 Bq/g. These results lead to the suggestion that the application of acid dissolution to the wet cake and the natural evaporation for the dissolved solution is an effective treatment method for chemical wastes containing uranium.

  • PDF

Recovery of Cobalt from Waste Cathodic Active Material Generated in Manufacturing Lithium Ion Batteries by Hydrometallugical Process (리튬이온전지 제조공정의 폐양극활물질로부터 습식제련공정에 의한 코발트의 회수)

  • Swain Basudev;Jeong Jinki;Kim Min Seuk;Lee Jae-chun;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.28-36
    • /
    • 2005
  • A hydrometallurgical process to leach cobalt from the waste cathodic active material, $LiCoO_{2}$, and subsequently to separate it by solvent extraction was developed. The optimum leaching conditions for high recovery of colbalt and lithium were obtained: 2.0 M sulfuric acid, 5 $vol.\%$ hydrogen peroxide, $75^{\circ}C$ leaching temperature, 30 minutes leaching time and an initial pulp density of 100 g/L. The respective leaching efficiencies for Co and Li were $93\%$ and $94.5\%$. About $85\%$ Co was extracted from the sulfuric acid leach liquor containing 44.72 g/L Co and 5.43 g/L Li, using 1.5 M Cyanex272 as an extractant at the initial pH 5.0 and in organic to aqueous phase ratio of 1.6:1 under the single stage extraction conditions. The Co in the raraffinate was completely extracted by 0.5 M Na-Cyanex272 at the inital pH 5.0, and an organic to aqueous phase ratio of 1;1. The cobalt sulfate solution of higher than $99.99\%$ purity could be recovered from waste $LiCoO_{2}$, using a series of hydrometallurgical processes: sulfuric acid leaching of waste $LiCoO_{2}$- solvent extraction of Co by Na-Cyanex 271 - scrubbing of Li by sodium carbonate solution - stripping of Co by sulfuric acid solution.

Characteristics of Microbial Community and Bio-hydrogen Production from Food Waste (음식물쓰레기의 생물학적 수소생산 및 미생물의 군집특성)

  • Choi, Moon-Su;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.86-96
    • /
    • 2012
  • Hydrogen gas production of anaerobic fermentative process from food waste as a substrate was 3.47 mg $H_2/g$ COD. The hydrogen production was little less than the synthetic wastewater with sucrose as a substrate (7.56 mg $H_2/g$ COD). The B/A ratios of the synthetic wastewater and food waste were 3.73 or 8.01 respectively. Butyric acid was more produced when hydrogen production was higher. Microbial community in the samples was analyzed as Escherichia sp., Klebsiella sp., Clostridium sp., Bacterium sp., and Enterobacter sp. Clostridium sp. was detected both samples but Klebsiella sp. was more active with fermentation process of the food waste. Taxonomic description shows that 60% of the microorganism was ${\gamma}-proteobacteria$ and Firmicute and Bacteria was 20% respectively.

Genetic Regulation of Corynebacterium glutamicum Metabolism

  • Wendisch Volker F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.999-1009
    • /
    • 2006
  • Physiological, biochemical and genetic studies of Corynebacterium glutamicum, a workhorse of white biotechnology used for amino acid production, led to a waste knowledge mainly about amino acid biosynthetic pathways and the central carbon metabolism of this bacterium. Spurred by the availability of the genome sequence and of genome-based experimental methods such as DNA microarray analysis, research on genetic regulation came into focus. Recent progress on mechanisms of genetic regulation of the carbon, nitrogen, sulfur and phosphorus metabolism in C. glutamicum will be discussed.

Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (II) : Dead-end Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (나노여과에 의한 중금속 함유 산성 폐에칭액의 재생(II) : 구리이온을 함유한 PCB 폐에칭액의 Dead-end 나노여과)

  • Nam, Sang-Won;Jang, Kyung-Sun;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.92-99
    • /
    • 2013
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a dead-end membrane filtration laboratory system. The pure water flux was increased with the increasing storage time in sulfuric acid solution and lowering pH of acid solution because of the enhancement of NF membrane damage by sulfuric acid. The permeate flux of acid solution was decreased with the increasing copper ion concentration. Total rejection of copper ion was decreased with the increasing storage time in sulfuric acid solution and copper ion concentration, and lowering the pH of acid solution. The total rejection of copper ion was decreased from initial 37% to 15% minimum value.