• 제목/요약/키워드: Waste Water Treatment Plant

검색결과 185건 처리시간 0.031초

하수처리장 방류수를 이용한 인공함양 가능성 평가

  • 김병군;서인석;홍성택;김형수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.257-260
    • /
    • 2002
  • The main purpose of this research is to find suitable treatment methods of wastewater effluent for artificial recharge. For this purpose, we search the effluent quality of wastewater treatment plant and possibility of additional filtration process. Particles ranged 2 ~ 5 ${\mu}{\textrm}{m}$ and 15~20 ${\mu}{\textrm}{m}$ in "T" WWTP(Waste Water Treatment Plant) effluent were relatively dominant. In dual-media filtration system operation, head-loss development of column 1 was about two times faster than column 2, and head-loss development within 5 cm from surface was very important factor in operation, Conclusively, for the stable filtration and running time of 1.5~2 day, influent turbidity must keep 5 NTU or below, and filtration system must operated at 280 m/day or below. After filtration of WWTP effluent, water quality reached satisfactory level. This water has potential of agricultural reusing, flushing water in building, recharging water to river or stream at dry season and artificial recharge of ground water.und water.

  • PDF

생활폐기물 고형연료(RDF) 제조기술 경제성 평가 (An Economic Evaluation of MSW RDF Production Plant)

  • 최연석;최항석;김석준
    • 신재생에너지
    • /
    • 제7권1호
    • /
    • pp.29-35
    • /
    • 2011
  • The waste treatment fee and energy production effect of Wonju city RDF plant, the first RDF manufacturing plant in Korea, were investigated in the study. All plant operation data, like total weight of received wastes, produced RDF and separated rejects in processes were fully recorded for mass balance calculation of the plant in 2009. Also all consumed oil and electricity were recorded for energy balance calculation. The results showed that the waste treatment fee not including the RDF sales price of 25,000 won/ton-RDF was 116,573 won/ton-MSW and it went down to 105,298 won when included the RDF price. Produced RDF was 40.2% of total received waste in weight. Three components analysis by mass balance calculation of total received waste showed that Wonju city's MSW was 32.4% of combustible, 37.5% of water and 30.1% of incombustible respectively. Energy effect was found that total amount of produced energy was about 4 times more than that of consumed energy.

인공습지와 연못시스템을 이용한 오수처리 (Waste Water Treatment Using Constructed Wetland and Pond System)

  • 김민희;윤춘경;함종화
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.470-474
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the waste water treatment using constructed wetland and pond system. The effluent of the wetland system in winter often exceeded effluent water quality standards for sewage treatment plant, therefore, pond system could be applied to additional system. As a result, removal rate of $BOD_{5}$, SS was 84.4%, 81.5% and effluent concentration was 4.6mg/L and 5.0mg/L respectively, when surface water of pond system was discharged in March. So we concluded that pond system stored wetland effluent in winter and discharged surface water of pond system in March, so met water quality standard.

  • PDF

녹색기업의 사업활동 전 과정에 대한 환경성 평가 -2. 물질수지 및 환경개선 (Life Cycle Assessment for the Business Activities of Green Company -2. Mass Balance and Environmental Improvement)

  • 신춘환;박도현
    • 한국환경과학회지
    • /
    • 제22권4호
    • /
    • pp.425-433
    • /
    • 2013
  • A mass balance of process was calculated by using the analysis of basic unit and environmental assessment of all the processes of Busan fashion color industry cooperative that operates a combined heat and power plant and a bio treatment plant. The mass balance for the combined heat and power plant was done, based on boiler and water treatment processes while each unit reactor was used for the bio treatment plant. From the results above, a resource recycle network, a treatment flowchart for food waste water/wastewater treatment and a carbon reduction program were established.

Nanowastes treatment in environmental media

  • Kim, Younghun
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.15.1-15.7
    • /
    • 2014
  • Objectives This paper tried to review a recent research trend for the environmental exposure of engineered nanomaterials (ENMs) and its removal efficiency in the nanowaste treatment plants. Methods The studies on the predicted environmental concentrations (PEC) of ENMs obtained by exposure modeling and treatment (or removal) efficiency in nanowaste treatment facilities, such as wastewater treatment plant (WTP) and waste incineration plant (WIP) were investigated. The studies on the landfill of nanowastes also were investigated. Results The Swiss Federal Laboratories for Materials Science and Technology group has led the way in developing methods for estimating ENM production and emissions. The PEC values are available for surface water, wastewater treatment plant effluents, biosolids, sediments, soils, and air. Based on the PEC modeling, the major routes for the environmental exposure of the ENMs were found as WTP effluents/sludge. The ENMs entered in the WTP were 90-99% removed and accumulated in the activated sludge and sludge cake. Additionally, the waste ash released from the WIP contain ENMs. Ultimately, landfills are the likely final destination of the disposed sludge or discarded ENMs products. Conclusions Although the removal efficiency of the ENMs using nanowaste treatment facilities is acceptable, the ENMs were accumulated on the sludge and then finally moved to the landfill. Therefore, the monitoring for the ENMs in the environment where the WTP effluent is discharged or biomass disposed is required to increase our knowledge on the fate and transport of the ENMs and to prevent the unintentional exposure (release) in the environment.

시멘트 공장에서의 재생연료 사용효과 연구 (A Study on the Effect of Reclaiming-Fuel in Coement Kiln)

  • 김도겸;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.37-43
    • /
    • 1996
  • The high Temperatures and long residence times in the combustion zones of cement kiln can use to burn liquid and solid wastes, such as fuel-wastes, sludges and tire-wastes. To the lastest time, treatment methods of industrial waste are incineration treatment, ocean dumping and land dumping. These are the main methods, but all of them may cause vatious kinds of secondary pollution, including air pollution and water pollution. From this point of view, to reuse the Reclaiming-Fuel in Cement Kiln is the most outstanding waste treatment plant in the world and dose not cause any pollution at all.

  • PDF

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

화학적 처리에 의한 1차 하수처리장의 처리효과 개선 -현장시험을 중심으로- (Chemically Enhanced Primary Treatment at D Wastewater Treatment Plant)

  • 곽종운;김승현;이찬원
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.99-108
    • /
    • 1997
  • This study examined the feasbility of upgrading D waste water treatment plant which treats incoming wastewater by primary sedimentation only. By adding 20-40 ppm of Hi-PAX into the outlet of the aerated grit chamber, BOD and SS removal efficiences were improved from 29% and 36% to 53 % and 73%,respectively. However, chemically enhanced primary treatment failed to meet the upcoming wastewater quality standard(BOD and SS <20 mg/l) consistently. This was suspected to result from the deteriorated plant return stream. The wastewater treatment by chemical treatment should have increased the amount of the sludge to be removed as the sludge production was increased. Chemically enhanced primary treatment is anticipated to consistently produce effluent of the 1996 standards quality by adjusting the amount of the sludge to be removed. Besides BOD and SS removal, chemically enhanced primary treatment resulted in the improved T-P removal from 30% to 64-74%. However, such benefit was not observed in T-N removal. Improved T-P removal will be expected to help control water pollution in Masan bay.

  • PDF

알루미늄 폐드로스로부터 수산화알루미늄 생산 시운전 결과 (Test Run for the Production of Aluminum Hydroxide by Recycling of Waste Aluminum Dross)

  • 이후인;박형규;김준수
    • 자원리싸이클링
    • /
    • 제13권2호
    • /
    • pp.47-53
    • /
    • 2004
  • 알루미늄 폐드로스는 알루미늄 용해업체에서 발생되는 주요 폐기물 중 하나인데, 폐드로스에는 상당량의 금속 알루미늄이 잔류한다. 본 연구에서는 알루미늄 폐드로스 내에 잔류하는 금속 알루미늄을 회수하고자 폐드로스를 수산화나트륨 용액으로 침출하여 폐드로스 중의 잔류 알루미늄을 용액 상으로 침출, 분리시킨 다음. 침출용액 중에서 알루미늄 성분을 수산화알루미늄으로 제조하는 연구를 수행하였으며, 연구결과의 상용화를 위하여 시범생산라인을 건설하여 시운전하였다. 시범생산라인은 년간 1,000톤의 폐드로스를 처리하여 500톤의 수산화알루미늄을 생산할 수 있는 규모이다. 생산라인의 시운전 결과 연구 개발한 기술의 상용화 가능성을 확인할 수 있었으며, 시험생산한 수산화알루미늄은 수처리 응집제용으로 사용 가능하다고 판단된다.

Experience in Combustion of Various Dewatered Sludges at a Commercial-Scale Fluidized Bed Incinerator

  • Gu, Jae-Hoi;Yoo, Byung-Sang;Yeo, Woon-Ha;Seo, Yong-Chil;Lee, Jea-Keun
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 추계 학술발표회 논문집
    • /
    • pp.91-96
    • /
    • 2000
  • A commercial-scale Fluidized Bed Incinerator(FBI) to treat dewatered sludges has been developed by Jindo Corporation, Korea, as one of the governmental R&D project during 1990 to 1997. The FBI plant was constructed at Kunsan city and fully in operation after finishing the successful test-burn period since June 1998. The company now has a capability of the design, construction and operation of commercial FBI plants. This paper introduces the experiences of design and operation of Kunsan FBI plant, which has the capacity of 60 ton/day and incinerates various sludges from waste water treatment facilities and liquid waste such as waste oil or waste solvent.

  • PDF