• Title/Summary/Keyword: Waste Water Treatment

Search Result 862, Processing Time 0.023 seconds

A Study on DMT Synthesis Using Crude TPA Sludge Generated from PET Alkaline Waste Water as Raw Materials (PET 감량폐약으로부터 발생되는 crude TPA sludge를 원료로 한 DMT 합성에 관한 연구)

  • Cho, Hwan;Kim, Jong Bo;Jeong, Hee Cheon;Jeon, Byung Dae
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.9-16
    • /
    • 1995
  • When alkaline waste water of PET fabric is treated with sulfuric acid, undegradable material, crude TPA sludge is generated, so that treatment has a serious problem. The result of DMT synthesis using crude TPA sludge generated from PET alkaline waste water were as follows: 1. When crude TPA generated from alkaline waste water is reactioned with methanol under catalyst of sulfuric acid, pure DMT can be obtained. 2. In DMT synthesis from crude TPA, addition of copper sulfate can increase yield, and increasing the amount of sulfuric acid can shorten reaction time.

  • PDF

Dynamic Studies on the Process of the Biological Denitrification 1. Variation of Bacterial Flora in the Waste Water Treatment of Fish Meat Paste Plant (생물학적 탈질공정에 관한 동력학적 연구 1. 연제품공장 폐수처리시의 세균Flora의 변동)

  • SHIN Suk U
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.398-404
    • /
    • 1984
  • This study was attempted to investigate variation of the bacterial flora in waste water treatment of fish meat paste plant by batch and continuous culture. The results of the experiment are as follows : 1. The removal rate of BOD in waste water treatment by activated sludge of continuous culture was above $90\%$. 2. In the process of nitric acidification of protein waste water, $NH_4-N\;and\;NO_2-N$ increased untill the lapse of 48 hours from culture, but $NO_3-N$ showed little change. 3. In activated sludge obtained from acclimation by batch culture for 10 days, bacteria good in capacity of nitric acidification were not appeared. 4. Among 120 strains of isolated bacteria, the most predominantly appeared bacterial flora were Enterobacteriaceae ($28\%$) and Pseudomonas spp. ($25\%$), In the latter term of aeration during which ammonia originates in abundance, Pseudomonas spp. was decreased but Enterobarteriaceae was increased. 5. Fifty percent of the isolated strains were able to grow in $0\%,\;3\%$ NaCl and $75\%$ artificial sea water, Therefore, it is suggested that sea water can be used as dilution water instead of tap water during the treatment of waste water.

  • PDF

Preparation of Alum and Poly Aluminum Chloride Using Waste Aluminum Dross (알루미늄 폐드로스를 재활용(再活用)한 Alum과 Poly Aluminum Chloride 제조(製造) 연구(硏究))

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.3-7
    • /
    • 2007
  • Waste aluminum dross was processed to prepare alum with sulfuric acid, and poly aluminum chloride(PAC) with hydrochloric acid. Metallic aluminum remained in the waste dross was dissolved into the sulfuric acid solution, and the solution could be used as alum for water treatment chemicals after adjusting the required alumina concentration and pH of the solution. Also, it was dissolved into the hydrochloric acid solution and processed to make PAC solution. Compared with the conventional method for preparation of alum and PAC using aluminum hydroxide, material cost could be saved in this method. Also, there is an additional merit in view of recycling of the waste aluminum dross by reducing the amount of waste disposed to landfill.

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

The Analysis of Environmental Impact Load by Fibrous Raw Materials and Wet-end Additives in Papermaking Process (제지공정 섬유상 원재료 및 공정 첨가제의 환경오염 부하 분석)

  • Kim, Hyoung-Jin;Shin, Dong-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.50-58
    • /
    • 2005
  • It is generally known that paper industry is the second largest industry in the use of process water, and also have the highest environmental impact load in the contaminant sources. Paper is produced from the mixtures composed of 1% fibrous raw materials and 99% water. The optimum use of process water effects on the quality properties of paper and the environmental impact load of waste water treatment. In this research, the kinds of fibrous raw material & additives used in the paperboard production line were investigated, and the quantification of environmental loads and the environmental effects of process water on COD potential were evaluated. The NBDCODs were also analyzed from process water by the method of waste water treatment in paper mill and applied for the optimum use of recycling water, and zero effluent process. In the fibrous raw materials, KOCC caused the highest COD potentials, and sack paper & UKP was comparatively low. The NBDCOD of KOCC largely reduced after biological treatment because of easily biodegradable properties, but AOCC contained non-biodegradable materials. In chemical additives, COD was high in turns of rosin>starch>deaeration agent>dye, NBDCOD greatly reduced in starch and deaeration agent. In the case of 2 kinds of paperboard product, the COD potentials was mainly high in starch, AOCC and KOCC.

Evaluation on the Possibility of a Retrofitting Treatment Using Moving Media of Existing Wastewater Treatment (유동상 Media를 이용한 기존하수처리장의 Retrofitting 가능성 평가)

  • Ko, Tae-Ho;Park, Woon-Ji;Lee, Chan-Ki
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.133-139
    • /
    • 2005
  • In this study, as MBBR(Moving Bed Biofilm Reactor) process using waste tire media is suggested for retrofitting with advanced wastewater treatment and the removal property of organic matter and nutrient and the capacity of media are evaluated through long-term operation with pilot plant following seasons, the application capacity of retrofitting with MBBR process to a existing wastewater treatment is studied. As a result of the long-term operation of the process, it is proved that there is no loss and abrasion of media, and also that it is possible to secure the sufficient attached bio-mass. The values of organic matter and nutrient in effluent are suitable for the strict discharged water quality standards in every season including winter.

  • PDF

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

Reuse of Rice-Hull and Application Technology Development in Waste Water Treatment (왕겨의 재활용 및 하수처리 활용기술 개발)

  • Shin, Ho-Sang;Ahn, Hye-Sil;Jung, Dong-Gyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • Activated Rice-Hull carbon was developed to remove ammonia compounds in water matrix. Isotherm adsorption tests of ammonia were conducted using a bottle-point technique and column test. Residual ammonia after Jar-Test or passing through the column was determined by Indophenol method, and assessed the removal efficiency for ammonia of the adsorbent. As a result, the adsorption capacity for ammonia of activated racehull carbon was very larger than that of coconut shell carbon, because the rice hull carbon had the higher BET surface area of silicate. The activated racehull carbon is under the development as adsorbent to remove ammonia in drinking water and waste water.

  • PDF

Study of Effectiveness of using higher voltages in analysis of dredged sediments and heavy metal concentration (고전압 이용한 준설퇴적토 유효성 및 중금속 변화에 관한 연구)

  • Kwon, Ki-Bum;Kim, Sang-Keun;Ramchanda, Prasad;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1446-1451
    • /
    • 2008
  • The clay found in the river or in any waste water treatment plant usually have a very high content of water. A large amount of sediments hinder the navigation in river. In waste water treatment plant, there is requirement of settling the thick sludge. These problems are overcome by using rapid means of sedimentation and settling. This paper focus on how method of Electrokinetic sedimentation can be made faster. Sedimentation using Electrokinetic phenomenon has been discussed with varied voltage applied and effect and dose of coagulant in increasing the process. The experimental test has been carried out at water content that are generally present in the case of river and small canals carrying waste water. This paper also focus on different heavy metals concentration during the process and the power aspects of process. A series of experiment were done to support the proposed theory and how a bubble formation could hinder the purpose of experiment.

  • PDF