• Title/Summary/Keyword: Waste Vehicle

Search Result 96, Processing Time 0.027 seconds

Development of Unmanned Vehicles System for Waste Collection Considering Worker Safety (작업자 안전을 고려한 무인 폐기물 수거차 시스템 개발)

  • Jung, Mingwon;Kim, Sangho;Lee, Sangmoo;Won, Daehee;So, Byungrok;Lee, Sangjun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.477-483
    • /
    • 2022
  • In this paper, we propose waste collection vehicle system with a safety device for worker safety and an autonomous driving function. The steering system is applied as MDPS (Motor Drive Power Steering) system to control the waste collection vehicle of the internal combustion engine. Safety-related errors is prevented through redundancy brake of the integrated system and the control braking system. In order to ensure safety between workers and waste collection vehicles, work guidelines and safety devices for emergency stop in case of danger are applied to vehicles. In addition, this research is conducted on improving the working efficiency through vehicle condition monitoring system and a short-range control system for field test. This research is aimed to secure stability through demonstration and contribute to the industrialization of unmanned waste collection vehicles.

Calculation of Dumping Vehicle Trajectory and Camera Coordinate Transform for Detection of Waste Dumping Position (폐기물 매립위치의 검출을 위한 매립차량 궤적 추적 계산 및 카메라 좌표변환)

  • Lee, Dong-Gyu;Lee, Young-Dae;Cho, Sung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.243-249
    • /
    • 2013
  • In waste repository environment, we can process the waste history efficiently for reuse by recording the history trajectory of the vehicle which loaded waste and the dumping position of the waste vehicle. By mapping the unloaded waste to 3D and by extracting the dumping point, a new method was implemented so as to record the final dumping position and the waste content under various experiments. In this paper, we developed the algorithm which tracking the vehicle and deciding the moment of dumping in landfills. We first trace the position of vehicle using the difference image between current image and background image and then we decide the stop point from the shape of vehicle route and detect the dumping point by comparing the dumping image with the image that vehicle is stopping. From the camera parameters, The transform method between screen coordinate and real coordinate of landfills is proposed.

A Study on the Solid Waste Collection Districting and Vehicle Routing-Scheduling for Waste Collection Using GIS (GIS를 이용한 생활폐기물의 수거권역설정과 수거차량의 순회경로계획에 관한 연구)

  • 이희연;임은선
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.15-30
    • /
    • 2001
  • Solid waste collection service is viewed as one of the most important public services in urban area. The purpose of this study is to apply the GIS based regional partitioning and arc routing methods for solid waste collection districting and vehicle routing-scheduling in order to provide waste collection service more efficiently. In this study, solid waste deposit sites are derived from the centroid of each building and the amount of solid waste is deduced based on the number of households and establishments. The regional partitioning procedure is performed based on waste collection zones which are constructed from waste deposit sites. The result of this study shows that solid waste collection districts which are delineated by regional partitioning method are able to increase efficiencies and cut costs in performing solid waste collection services. Also the output of vehicle-scheduling from the analysis of arc routing may provide more efficiently and quickly manage the scheduling of the residential solid waste collection routes, reducing costs with minimal deadheading costs. Therefore, the application of GIS based on regional partitioning and arc routing methods would be very useful to construct a solid waste management system by supplying the important and flexible informations for solid waste collection districts and vehicle routing-scheduling for waste collection.

  • PDF

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.

Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles (이중열원을 이용한 전기자동차용 히트펌프 시스템의 난방 성능 특성에 관한 연구)

  • Woo, Hyoung Suk;Ahn, Jae Hwan;Oh, Myoung Su;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • An electric vehicle is an environment-friendly automobile which does not emit any tailpipe pollutant. In a conventional vehicle with an internal combustion engine, the internal cabin of the vehicle is usually heated using waste heat from the engine. However, for an electric vehicle, an alternative solution for heating is required because it does not have a combustion engine. Recently, a heat pump system which is widely used for residential heating due to its higher efficiency has been studied for its use as a heating system in electric vehicles. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was measured by varying the mass flow rate ratio. The experimental results show that the heating capacity and COP in the dual heat source heat pump were increased by 20.9% and 8.6%, respectively, from those of the air-source heat pump.

Electric vehicle battery remaining capacity analysis method using cell-to-cell voltage deviation (셀간 전압 편차를 활용한 전기자동차 배터리 잔존용량 분석 기법)

  • Gab-Seong Cho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.54-65
    • /
    • 2023
  • Due to the nature of electric vehicles, the batteries used for electric vehicles have a very large rated capacity. If an electric vehicle runs for a long time or an electric vehicle is abandoned due to a traffic accident, the electric vehicle battery becomes a waste battery. Even in vehicles that are being abandoned, the remaining capacity of waste batteries for electric vehicles is sufficient for other purposes. Waste batteries for automobiles are very expensive, so they need to be recycled and reused, but there was a problem that the standards for measuring the performance grade of waste batteries for recycling and reuse were insufficient. As a method for measuring the remaining capacity of waste battery, the most stable and reliable method is to measure the remaining capacity of battery using full charge and discharge. However, the inspection method by the full charging and discharging method varies depending on the capacity of the battery, but it takes more than a day to inspect, and many people are making great efforts to solve this problem. In this paper, an electric vehicle battery residual capacity analysis technique using voltage deviation between cells was studied and analyzed as a method to reduce inspection time for electric vehicle batteries. To this end, a full charging and discharging-based capacity measurement system was constructed, experimental data were collected using a nose or waste battery, and the correlation between the voltage deviation and the remaining capacity of the battery pack was analyzed to verify whether it can be used for battery inspection.

  • PDF

Analysis of the Electric Energy and Exhaust Heat Energy for the Application of Thermo-Electric Generation in a Gasoline Vehicle (열전발전 적용을 위한 가솔린차량의 전력 및 배기열 에너지 분석 연구)

  • 이영재;표영덕;김강출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.99-105
    • /
    • 2002
  • About 70% of energy input to internal combustion engine is rejected to atmosphere by heat. By utilizing this waste heat, a plenty of energy can be conserved in nationwide. One of possible ways is the thermoelectric generation to utilize engine's waste heat to provide auxiliary electric power. Under th is concept, we have been developing the thermoelectric generation system to replace the alternator by converting the waste heat in the engine's exhaust directly to electricity This system may reduce the shaft horse power of the engine, then improves the vehicle fuel economy and the exhaust emissions. In the present study, the characteristics of the electric energy and exhaust heal energy in city and highway mode driving conditions are analysed by using a gasoline passenger car. These results would be used to determine the optimum design parameters of the thermoelectric generation system.

A Study on the Potential of CO2 Emissions Reduction Recycled Aggregate according to Transportation Plan of Waste Concrete - Focused on Daegu City and Kyungpook Area - (폐콘크리트의 수송계획에 따른 순환골재의 CO2 배출량 저감 가능성에 관한 연구 - 대구·경북지역을 중심으로 -)

  • Kim, Tae Hyun;Cha, Gi Wook;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2014
  • The recent interests in securing alternative resource have increased due to environmental issues and exhaustion of natural resources. The government notices production of recycled aggregate using waste concrete as the substitute of the natural aggregate. However, It's important to reduce environmental burden being inevitably made in the process producing recycled aggregate. In this study, the scenarios of transportation distance were set in the transportation phase of production of recycled aggregate. In addition, The possibility of emissions and reduction of carbon dioxide were studied depending on the scenarios. For this study, data about a amount of waste concrete, transportation distance, kind of vehicle, the number of required vehicle, fuel efficiency of vehicle and etc were gathered from 15 companies of intermediate treatment and 60 constructions sites located in Daegu city and Kyungpook area. Based on those data, fuel consumptions and $CO_2$ emissions according to the transportation scheme of waste concrete were calculated. As a result of the study, the emission of carbon dioxide was possible to be reduced by 27.8~75.4% depending on the scenarios of transportation distance.

A comprehensive optimization model for integrated solid waste management system: A case study

  • Paul, Koushik;Chattopadhyay, Subhasish;Dutta, Amit;Krishna, Akhouri P.;Ray, Subhabrata
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.220-237
    • /
    • 2019
  • Solid waste management (SWM) is one of the poorly rendered services in developing countries - limited resources, increasing population, rapid urbanization and application of outdated systems leads to inefficiency. Lack of proper planning and inadequate data regarding solid waste generation and collection compound the SWM problem. Decision makers need to formulate solutions that consider multiple goals and strategies. Given the large number of available options for SWM and the inter-relationships among these options, identifying SWM strategies that satisfy economic or environmental objectives is a complex task. The paper develops a mathematical model for a municipal Integrated SWM system, taking into account waste generation rates, composition, transportation modes, processing techniques, revenues from waste processing, simulating waste management as closely as possible. The constraints include those linking waste flows and mass balance, processing plants capacity, landfill capacity, transport vehicle capacity and number of trips. The linear programming model integrating different functional elements was solved by LINGO optimization software and various possible waste management options were considered during analysis. The model thus serves as decision support tool to evaluate various waste management alternatives and obtain the least-cost combination of technologies for handling, treatment and disposal of solid waste.