• Title/Summary/Keyword: Waste Gasification System Analysis

Search Result 9, Processing Time 0.024 seconds

The Worldwide Trend of waste Treatment Technology and DAEWOO-TS Gasification & Melting System (세계의 폐기물처리기술 동향과 DAEWOO-TS 열분해 가스화 용융기술)

  • 허일상;김우봉
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • Worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary for our country to adopt gasification & melting system urgently to present the land pollution and lack of landfill area. Among several gasification and melting processes Daewoo-Thermoselect gasification and melting system is the representative process which can transfer waste to resources such as sin-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, degasification, gasification and melting.

  • PDF

Determination of Residual Pesticides in Recycle Product of Waste Plastic Pyrolysis (폐비닐 열분해 재활용품 중의 잔류농약 분석)

  • Shin Hea Soon;Shim Sung Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.315-320
    • /
    • 2004
  • Environmental waste treatment technology is transforming from incineration system to pyrolysis gasification system. And there it is necessary for our country to adapt gasification system urgently to prevent the land pollution and lack of landfill area. The objective of this study was to determine the pesticides residues of derived product of pyrolysis gasification system for recycling of waste plastic by gas chromatograph-mass selective detector and nitrogen phosphorus detector. The residual pesticides were not detected in derived product of waste recyling. But some pesticide was detected on raw level (0.02 ~ 0.05 ppm) in waste plastic sample.

Hepatotoxicity Assessment of Derived Product from Pyrolysis System for Waste Plastic Recycling (폐플라스틱 재활용을 위한 열분해공정 파생물질의 간독성 평가)

  • Shin Hea Soon
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • Recently, waste plastic recycling technology is transforming from Incineration system to pyrolysis gasification system which can derive the resources from environmental waste and charge no more environmental burden to nature. The present study was carried out to investigate the potential acute toxicity of derived product of pyrolysis gasifications system for recycling of waste plastic by a single oral dose in Sprague-Dawley Rats. In order to evaluate the hepatotoxic effects of derived product of pyrolysis gasification system, activities of serum transaminase were measured in rats. No related changes in survivals, clinical signs and the ratio of the liver to body weights of rats were monitored. The results showed that the single oral administration of material of pyrolysis system for recycling of waste plastic did not induce any toxic effect at orally single dose level of 0 and 100, 200, 400, 800mg/kg body weight in rats. We could not find out any significant tocxicity induced by single oral administrate of material of pyrolysis system for recycling of waste plastic.

Evaluation of the Waste Gasification System Using Analysis Framework for Gasification System (가스화시스템 분석 프레임워크를 이용한 폐기물 가스화 시스템 분석.평가)

  • Kim, NaRang;Gu, JaeHoi;Kim, SuHyun;Park, SooNam;Sung, HoJin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.209.2-209.2
    • /
    • 2010
  • 최근 정부의 녹색성장 정책, 고유가시대 도래, 온실가스 감축 의무화, 폐기물 해양배출 강화 등으로 인해 폐기물의 자원화에 대한 관심이 고조되고 있다. 국내에서 발생되는 가연성폐기물을 기존의 감량처리 대신 가스화 공정을 적용하여 합성가스로 전환할 경우 환경친화적이고 고효율의 에너지 회수가 가능하게 된다. 폐기물 가스화를 통해 얻어진 합성가스는 난방, 가스엔진 및 연료전지를 이용한 전기생산과 DME, SNG등의 합성연료유 제조에 활용될 수 있으며, WGS 반응 및 PSA 방법에 의해 수소를 얻을 수 있다. 이와 더불어 최근에는 메탄올과 CO의 합성을 통해 얻어지는 초산제조 공정에서의 원료로서 폐기물 가스화를 통한 합성가스 내의 CO를 활용하는 방안이 연구되고 있다. 이는 기존 초산 제조공정에서 CO를 생산하기 위해 소모되는 고가의 석유계(납사, 중질유) 원료를 절감할 수 있어 경제적으로 장점을 가지고 있다. 이를 위해서는 폐기물 가스화에서 발생된 합성가스 내에 포함된 금속성분, 분진등의 오염물질의 농도가 후단공정에 영향을 주지 않아야 하며, 초산제조공정의 안정적인 운전을 위해 합성가스의 CO, $H_2$ 조성 변화폭이 ${\pm}5%$이하로 유지되어야 하는 기술적인 문제를 해결해야 한다. 따라서 본 연구에서는 폐기물 가스화 시스템의 운전특성을 통해 환경성, 기술성, 경제성을 분석 평가 할 수 있도록 구성된 분석 프레임워크를 이용하여, 초산제조공정에 적용하기위한 상용급 폐기물 가스화 시스템의 특성을 비교 분석하였다.

  • PDF

Destruction of HFC-134a Refrigerant in Gasification-melting Demonstration System (가스화용융(熔融) 실증 시스템에서 HFC-134a 냉매분해(冷媒分解) 특성(特性) 연구(硏究))

  • Jung, Dae Sung;Hong, Byeong Kwon;Kim, Woo Hyun;Roh, Seon Ah
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.69-75
    • /
    • 2012
  • Destruction of HFC-134a from ELV (End of Life Vehicle) were determined in a gasification-melting demonstration system of municipal solid waste (100ton/day). The injection system has been developed for the uniform injection of HFC-134a to the gasification-melting system. The destruction characteristics of HFC-134a and analysis of exhaust gases have been performed. The destruction efficiency was 99.995% for HFC-134a feeding of 3 kg/hr and the exhaust gases such as CO, SOx, NOx, HCl and HF satisfied the environmental standards.

Waste Gasification System Analysis Framework Development Based on Systems Engineering Concept (시스템공학 개념을 적용한 폐기물 가스화 시스템 분석 프레임워크 개발)

  • Lim, Yongtaek;Gu, Jaehoi;Kim, Narang;Lee, Jaechon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.208.2-208.2
    • /
    • 2010
  • 폐기물 가스화는 생산된 합성가스를 이용하여 발전 등 직접적인 에너지원으로 이용할 수 있으며, 고부가가치 화합물의 원료 공급원으로도 이용할 수 있다. 폐기물 가스화를 이용한 고부가가치 화합물 제조의 경우 기존 화합물 제조공정에 폐기물 가스화 공정이 연계되어, 하나의 복합시스템으로 운영이 된다. 따라서 기존 공정과 최적으로 연계될 수 있는 폐기물 가스화 시스템의 개발 또는 선정이 필요하며, 이를 위하여 폐기물 가스화 시스템에 대한 분석 평가가 적절하게 이루어져야 한다. 본 연구에서는 시스템공학 개념을 적용하여 폐기물 가스화 시스템의 체계적인 분석 평가를 위한 프레임워크를 개발하였다. 시스템공학은 요건분석, 기능분석, 합성(통합), 분석/관리 프로세스를 통하여 시스템을 성공적으로 구현하기 위한 다학제적인 접근방법이다. 이러한 시스템공학의 개념 및 기본 프로세스를 적용 조정하여 폐기물 가스화 분석 평가 프레임워크를 개발하였으며, 개발된 프레임워크는 계층구조로 표현이 된다. 계층구조는 분석관점, 분석항목, 분석지표로 구성이 되며 분석된 데이터에 대한 평가는 AHP를 통하여 계산된 가중치를 적용하여 이루어진다.

  • PDF

Landfill gas-landfill degassing system and methods of using landfill gas at Sarajevo landfill

  • Dzevad Imamovic;Amra Serdarevic
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.531-537
    • /
    • 2023
  • Municipal solid waste landfills are unpredictable bioreactors which in cases of mishandling and bad supervision presents numerous risks. The key to municipal waste landfills is to approach them from the point of prevention of the possible consequences, which means using methods of organized waste disposal, and also utilizing landfill gas, as an unavoidable consequence with disposal of municipal solid waste with a high share of biodegradable organic matter. This paper presents an overview about problems of solid municipal waste management, type and composition of waste, and an overview of waste management condition. Further, the problem of landfill and landfill gasses is described with the calculation models of landfill production, as well as the use of the SWM GHG Calculator and LandGEM software on a specific example of gas production for the central zone at Sarajevo landfill "Smiljevici". Main focus of this thesis is the analysis of potentials of greenhouse gas emission reduction measures from the waste management. Overview of the best available techniques in waste management is presented as well as the methodology used for calculations. Scenarios of greenhouse gas emission reduction in waste management were defined so that emissions were calculated using the appropriate model. In the final section of the paper, its description of the problem of collection and utilization the landfill gas at the sanitary landfill "Smiljevici", and implementation of the system for landfill gas collection and solution suggestion for the gasification and exploitation of gas. Energy, environmental and economic benefits can be accomplished by utilizing municipal solid waste as fuel in industry and energy and moreover by utilizing energy generation from landfill gas, which this thesis emphasizes.

A study on the Chlorine removal characteristics of Plastics in a Lab-scale Pyrolysis reactor (실험실 규모 열분해로에서의 플라스틱 탈염 특성 연구)

  • Park, Ju-Won;Park, Sang-Shin;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.155-160
    • /
    • 2007
  • This study was conducted to find out the chlorine removal characteristics of waste plastic mixture by pyrolysis process with thermogravimetric analysis(TGA) and a lab-scale pyrolyzer. The material used as plastic wastes were PE (Poly-ethylene), PP (Poly-prophylene), and PVC (Poly Vinyl Chloride). Experimental procedure were composed of three steps; 1st step: TGA of PVC, PP and PE, 2nd step: chlorine removal rate of PVC in a lab-scale pyrolyzer, 3rd step: chlorine removal rate of PVC-PE and PVC-PP mixture in a pyrolyzer. Through the results of TGA, we can estimate the basic pyrolysis characteristics of each plastic, and then we can also derive the design parameters and operating conditions of the lab-scale pyrolyzer. The results can be used as primary data for designing a system to produce RPF (Refuse Plastic Fuel), a waste incinerator and a pyrolysis/gasification process.

  • PDF

Analysis of Environmental Impacts for the Biochar Production and Soil Application (폐목재를 이용한 바이오차 생산 및 토양적용의 환경평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.461-468
    • /
    • 2014
  • Biochar is a carbon rich solid produced by the pyrolysis of biomass such as energy crops, forestry residues, and wood wastes. Biochar returned to soil is to mitigate climate change and the feedstock of wood wastes reduces fossil fuel consumption as well as disposal costs. This study was practiced to evaluate a biochar system by gasification in terms of global warming regarding the soil application of the produced biochar. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was 1 tonne of wood wastes. The result shows that the biochar system by using wood wastes as feedstock produces 4.048E-01 $kgCO_2-eq$ from the pre-treatment process as chipping and drying, 4.579E-01 $kgCO_2-eq$ from the pyrolysis process, and 9.070E-02 $kgCO_2-eq$ from the spreading to agricultural land, therefore total 9.534E-01 $kgCO_2-eq$ are generated. About 252 kg of $CO_2$ is still stored in the produced biochar in soil after carbon offsetting of the system. Therefore, the net carbon of the system is -251 kg of $CO_2-eq$.