DOI QR코드

DOI QR Code

Analysis of Environmental Impacts for the Biochar Production and Soil Application

폐목재를 이용한 바이오차 생산 및 토양적용의 환경평가

  • Kim, Mihyung (Department of Civil and Environmental Engineering, Hannam University) ;
  • Kim, Geonha (Department of Civil and Environmental Engineering, Hannam University)
  • 김미형 (한남대학교 건설시스템공학과) ;
  • 김건하 (한남대학교 건설시스템공학과)
  • Received : 2014.06.25
  • Accepted : 2014.07.14
  • Published : 2014.07.31

Abstract

Biochar is a carbon rich solid produced by the pyrolysis of biomass such as energy crops, forestry residues, and wood wastes. Biochar returned to soil is to mitigate climate change and the feedstock of wood wastes reduces fossil fuel consumption as well as disposal costs. This study was practiced to evaluate a biochar system by gasification in terms of global warming regarding the soil application of the produced biochar. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was 1 tonne of wood wastes. The result shows that the biochar system by using wood wastes as feedstock produces 4.048E-01 $kgCO_2-eq$ from the pre-treatment process as chipping and drying, 4.579E-01 $kgCO_2-eq$ from the pyrolysis process, and 9.070E-02 $kgCO_2-eq$ from the spreading to agricultural land, therefore total 9.534E-01 $kgCO_2-eq$ are generated. About 252 kg of $CO_2$ is still stored in the produced biochar in soil after carbon offsetting of the system. Therefore, the net carbon of the system is -251 kg of $CO_2-eq$.

바이오차(biochar)는 산소가 제한된 환경에서 바이오매스를 열분해를 시켜 얻을 수 있는 고체물질을 말한다. 원료가 되는 바이오매스는 에너지작물, 임업부산물, 농업부산물 등의 폐기물을 사용할 수 있으며, 토양으로 적용 시 기후변화 완화, 화석연료 소비저감, 폐기물 처리비용저감 등의 장점이 있다. 본 연구에서는 폐목재를 원료로 바이오차를 생산하는 시스템을 대상으로 전과정평가 기법에 의해 환경에 미치는 영향을 평가하고자 하였다. 폐목재 1톤을 기능단위로 하였을 때 생산되는 바이오차를 토양에 적용하는 시나리오를 구성하고 지구온난화에 미치는 영향을 중심으로 환경영향을 분석한 결과, 파쇄 및 건조의 전처리 공정에서 4.048E-01 kg, 가스화 열분해공정에서 4.579E-01 kg, 토양살포 공정에서 9.070E-02 kg의 온실가스를 발생하여 총 9.534E-01 kg의 온실가스가 발생하는 것을 확인하였다. 바이오차의 토양적용 시 탄소저장효과는 252 kg으로 분석되어 251 kg의 탄소 네거티브 효과를 보였다.

Keywords

References

  1. Woo, S. H., "Biochar for soil carbon sequestration," Clean Technol., 19(3), 201-211(2013). https://doi.org/10.7464/ksct.2013.19.3.201
  2. Jirka, S. and Tomlinson, T., "2013 State of the biochar industry," Int. Biochar Initiative, pp. 1-61(2014).
  3. Lehmann, J., "A handful of carbon," Nature, 447(10), 143-144(2007a). https://doi.org/10.1038/447143a
  4. Lehmann, J. and Joseph, S., "Biochar for environmental management: An introduction, in biochar for environmental management: Science and Technology," Earthscan, London, pp. 1-12(2009).
  5. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. and Joseph, S., "Sustainable biochar to mitigate global climate change," Nat. Commun., 1(56), 1-9(2010).
  6. Lehmann, J., "Bio-energy in the black," Front Ecol. Environ., 5(7), 381-387(2007b). https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
  7. Lim, J. E., Kim, H. W., Jeong, S. H., lee, S. S., Yang, J. E., Kim, K. H. and Ok, Y. S., "Characterization of Burcucumber biochar and its potential as an adsorbent for veterinary antibiotics in water," J. Biol. Chem., 57(1), 65-72(2014).
  8. Jeong, S. and Suh, S., "Assessment of environmental impacts and $CO_{2}$ emissions from soil remediation technologies using life cycle assessment-Case studies on SVE and biopile systems," J. Kor. Soc. Environ. Eng., 33(4), 267-274(2011). https://doi.org/10.4491/KSEE.2011.33.4.267
  9. Park, P. and Kim, M., "The development of Korean life cycle impact assessment index based on a damage oriented modeling," J. Kor. Soc. Environ. Eng., 32(5), 499-508(2010).
  10. Han, J., Elgowainy, A., Dunn, J. and Wang, M., "Life cycle analysis of fuel production from fast pyrolysis of biomass," Bioresour. Technol., 133, 421-428(2013). https://doi.org/10.1016/j.biortech.2013.01.141
  11. Fiorentino, G., Ripa, M., Mellino, S., Fahd, S. and Ulgiati, S., "Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals," J. Clean Prod., 66, 174-187(2014). https://doi.org/10.1016/j.jclepro.2013.11.043
  12. Gaunt, j. L. and Lehmann, J., "Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production," Environ. Sci. Technol., 42, 4152-4158(2008). https://doi.org/10.1021/es071361i
  13. Huang, Y. F., Syu, F. S., Chiueh, P. T. and Lo, S. l., "Life cycle assessment of biochar cofiring with coal," Bioresour. Technol., 131, 166-171(2013). https://doi.org/10.1016/j.biortech.2012.12.123
  14. Hammond, J., Shackley, S., Sohi, S. and Brownsort, P., "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, 39, 2646-2655(2011). https://doi.org/10.1016/j.enpol.2011.02.033
  15. Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. and Lehmann, J., "Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential," Environ Sci Technol, 44, 827-833(2010). https://doi.org/10.1021/es902266r
  16. Kim, J. M., "A study on the low temperature pyrolysis with timber," Master thesis, Suwon University(2010).
  17. Yang, H., Yan, R., Chen, H., Lee, D. H. and Zheng, C., "Characteristics of hemicellolose, cellulose and lignin pyrolysis," Fuel, 86, 1781-1788(2007). https://doi.org/10.1016/j.fuel.2006.12.013
  18. Bridgwater, A., "Biomass pyrolysis," IEA Bioenergy Task, 34, 1-9(2007).
  19. ISO (International Organization for Standardization) 14040, Environmental management-Life cycle assessment-Principles and framework, ISO 14040:2006(E), Int Organ Standardization, Geneva, pp. 6-16(2006).
  20. ISO (International Organization for Standardization) 14044, Environmental management-Life cycle assessment-Requirement and guidelines, ISO 14044:2006(E), Int Organ Standardization, Geneva, pp. 6-26(2006).
  21. Levernez, H. L., Tchobanoglous, G. and Darby, J. L., "Clogging in intermittently dosed sand filters used for wastewater treatment," Water Res., 43, 695-705(2009). https://doi.org/10.1016/j.watres.2008.10.054
  22. Pozzi, A., "Biochar for carbon sequestration and large-scale removal of greenhouse gases (GHG) from the atmosphere," EP7-ENV-1010, European Commission(2010).
  23. Husk, B., Preliminary evaluation of biochar in a commercial farming operation in Canada, BlueLeaf Inc.(2009).
  24. Byrne, C. E. and Nagle, D. C., "Carbonized wood monoliths- Characterization," Carbon, 35, 267-273(1997). https://doi.org/10.1016/S0008-6223(96)00135-2
  25. Francescato, V., Antonini, E. and Bergomi, L. Z., Wood fuels handbook, Biomass Trade Centers(2009).
  26. Kim, S. C., Kim, K. U. and Kim, D. C., "Modeling of fuel consumption rate for agricultural tractors," J. Biosys. Eng., 35(1), 1-9(2010). https://doi.org/10.5307/JBE.2010.35.1.001
  27. Esteinou, R. I., "Pyrolysis for waste treatment: A life cycle assessment of biodegradable waste, bioenergy generation," and biochar production in Glasgow and Clyde valley, Master thesis, The University of Edinburgh(2009).
  28. Kim, M. H. and Kim G. H., "Analysis of environmental impacts using LCA for the carcass burial," Kor. Soc. Water Environ., 29(2), 239-246(2013).
  29. Ryu, J. H. and Kim, K. H., "Application of LCA methodology on lettuce cropping systems in protected cultivation," Kor. J. Soil Sci. Fertilizer, 43(5), 705-717(2010).