• Title/Summary/Keyword: Warning algorithm

Search Result 219, Processing Time 0.023 seconds

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.

Lane Detection based Open-Source Hardware according to Change Lane Conditions (오픈소스 하드웨어 기반 차선검출 기술에 대한 연구)

  • Kim, Jae Sang;Moon, Hae Min;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • Recently, the automotive industry has been studied about driver assistance systems for helping drivers to drive their cars easily by integrating them with the IT technology. This study suggests a method of detecting lanes, robust to road condition changes and applicable to lane departure warning and autonomous vehicles mode. The proposed method uses the method of detecting candidate areas by using the Gaussian filter and by determining the Otsu threshold value and edge. Moreover, the proposed method uses lane gradient and width information through the Hough transform to detect lanes. The method uses road lane information detected before to detect dashed lines as well as solid lines, calculates routes in which the lanes will be located in the next frame to draw virtual lanes. The proposed algorithm was identified to be able to detect lanes in both dashed- and solid-line situations, and implement real-time processing where applied to Raspberry Pi 2 which is open source hardware.

Application of the Onsite Earthquake Early Warning Technology Using the Seismic P-Wave in Korea (P파를 이용한 지진 현장 경보체계기술의 국내 적용)

  • Lee, Ho-Jun;Lee, Jin-Koo;Jeon, Inchan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.440-449
    • /
    • 2018
  • Purpose: This study aims to design and verify an onsite EEWS that extracts the P-wave from a single seismic station and deduce the PGV. Method: The P-wave properties of Pd, Pv, and Pa were calculated by using 12 seismic waveform data extracted from historic seismic records in Korea, and the PGVs were computed using empirical equation on the P properties - PGV relationship and compared with the observed values. Results: Comparison of the observed and estimated PGVs within the alarm level shows the error rate of 86.7% as minimum. By reducing the PTW to 2 seconds, the alarm time can be shortened by 1 second and the seismic blind zone near the epicenter can be shortened by 6 Km. Conclusion: Through this study, we confirmed the availability of the on-site EEWS in Korea. For practical use, it is necessary to develop regression formula and algorithm reflect local effect in Korea by increasing the number of seismic waveform data through continuous observation, and to eliminate the noise from the site.

A Convergence Study on the Topic and Sentiment of COVID19 Research in Korea Using Text Analysis (텍스트 분석을 이용한 코로나19 관련 국내 논문의 주제 및 감성에 관한 융합 연구)

  • Heo, Seong-Min;Yang, Ji-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.31-42
    • /
    • 2021
  • The purpose of this study was to explore research topics and examine the trend in COVID19 related research papers. We identified eight topics using latent Dirichlet allocation and found acceptable validity in comparison with the structural topic model. The subtopics have been extracted using k-means clustering and plotted in PCA space. Additionally, we discovered the topics bearing negative tones and warning signs by sentiment analysis. The results flagged up the issues of the topics, Biomedical Related, International Dynamics and Psychological Impact. The findings could serve as a guideline for researchers who explore new research directions and policymakers who need to make decisions about which research projects to support.

A preliminary study on the determination of drought stages at the local level (지역 단위 가뭄단계 판단규칙 개발에 관한 연구)

  • Lee, Jongso;Jeon, Daeun;Yoon, Hyeoncheol;Kam, Jonghun;Lee, Sangeun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.929-937
    • /
    • 2023
  • This study aims to develop rules for the Determination of Drought Stages at the Local Level based on the drought cases in Gwangju and Jeollanam-do in 2022-2023. Among the eight drought indicators provided, six indicators (Agricultural drought stage (for paddy), Residential & industrial drought stage, SPI-12, Relative agricultural water storage, Residential water consumption change (for domestic use), Residential water consumption change (for non-domestic use) were confirmed to have statistical correlations with the perceptions of local government officials and experts. Additionally, this drought indicator was applied to a decision tree algorithm to develop rules for determining the severity of drought. Although it presented results similar to those of the existing method presented in previous studies, it showed a significant comparative advantage in explaining the temporal and spatial patterns of drought in the Gwangju and Jeollanam-do.

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.