• Title/Summary/Keyword: Warning algorithm

Search Result 219, Processing Time 0.03 seconds

Development of Embedded Lane Detection Image Processing Algorithm for Car Black Box (차량용 블랙박스를 위한 임베디드 차선감지 영상처리 알고리즘 개발)

  • Yi, Soo-Yeong;Ryu, Ji-Hyoung;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2942-2950
    • /
    • 2010
  • Car black box helps to investigate the cause of accident by recording time, position and videos as well as shock information. In addition, the car black box need a function to support safe driving for preventing accident. The representative driving support function is a lane departure warning. In order to implement the function, it is necessary to carry out the image processing to detect the lane first. The image processing algorithm requires computational burden to handle so much data and complicated structure of algorithm. This paper describes the efficient image processing algorithm with relatively low amount of computation for car black box embedded platform to detect lanes from the real-time lane image.

A Fusion of Vehicle Sensors and Inter-Vehicle Communications for Vehicular Localizations (자동차 센서와 자동차 간 통신의 융합 측위 알고리듬)

  • Bhawiyuga, Adhitya;Nguyen, Hoa-Hung;Jeong, Han-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.544-553
    • /
    • 2012
  • A vehicle localization technology is an essential component to support many smart-vehicle applications, e.g. collision warning, adaptive cruise control, and so on. In this paper, we present a new vehicle localization algorithm based on the fusion of the sensing estimates from the local sensors and the GPS estimates from the inter-vehicle communications. The proposed algorithm consists of the greedy location data mapping algorithm and the position refinement algorithm. The former maps a sensing estimate with a GPS estimate based on the distance between themselves, and then the latter refines the GPS estimate of the subject vehicle based on the law of large numbers. From the numerical results, we demonstrate that the accuracy of the proposed algorithm outperforms that of the existing GPS estimates by at least 30 % in the longitudinal direction and by at least 60% in the lateral direction.

Forward Vehicle Movement Estimation Algorithm (전방 차량 움직임 추정 알고리즘)

  • Park, Han-dong;Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1697-1702
    • /
    • 2017
  • This paper proposes a forward vehicle movement estimation algorithm for the image-based forward collision warning. The road region in the acquired image is designated as a region of interest (ROI) and a distance look up table (LUT) is made in advance. The distance LUT shows horizontal and vertical real distances from a reference pixel as a test vehicle position to any pixel as a position of a vehicle on the ROI. The proposed algorithm detects vehicles in the ROI, assigns labels to them, and saves their distance information using the distance LUT. And then the proposed algorithm estimates the vehicle movements such as approach distance, side-approaching and front-approaching velocities using distance changes between frames. In forward vehicle movement estimation test using road driving videos, the proposed algorithm makes the valid estimation of average 98.7%, 95.9%, 94.3% in the vehicle movements, respectively.

A Study on the Fault Diagnosis of Roller-Shape Using Frequency Analysis of Tension Signals and Artificial Neural Networks Based Approach in a Web Transport System

  • Tahk, Kyung-Mo;Shin, Kee-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1604-1612
    • /
    • 2002
  • Rollers in the continuous process systems are ones of key components that determine the quality of web products. The condition of rollers (e.g. eccentricity, runout) should be consistently monitored in order to maintain the process conditions (e.g. tension, edge position) within a required specification. In this paper, a new diagnosis algorithm is suggested to detect the defective rollers based on the frequency analysis of web tension signals. The kernel of this technique is to use the characteristic features (RMS, Peak value, Power spectral density) of tension signals which allow the identification of the faulty rollers and the diagnosis of the degree of fault in the rollers. The characteristic features could be used to train an artificial neural network which could classify roller conditions into three groups (normal, warning, and faulty conditions) The simulation and experimental results showed that the suggested diagnosis algorithm can be successfully used to identify the defective rollers as well as to diagnose the degree of the defect of those rollers.

A Study on a Lane Detection Using Eccentricity (Eccentricity를 이용한 차선 검출에 관한 연구)

  • Jeong, Tae-Il;Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2755-2761
    • /
    • 2012
  • In this paper, a lane detection algorithm using Eccentricity calculation is proposed. Lane detection is used for lane departure warning which can support safe driving to prevent accidents. In other to enhance the detection rate, we define the Eccentricity calculation which is introduced in graph theory, and evaluate the Eccentricity. The Eccentricity for any straight line is equal to 1, hence computing the Eccentricity allows the implementation of a first order equation. As a results of simulation, we confirmed that the proposed algorithm was enhanced by time and space complexity, and superior to the performance of the conventional lane detections.

A Real-time Lane Tracking Using Inverse Perspective Mapping (역투영 변환을 이용한 고속도로 환경에서의 실시간 차선 추적)

  • Yeo, Jae-yun;Koo, Kyung-mo;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.103-107
    • /
    • 2013
  • In this paper, A real-time lane tracking algorithm is proposed for lane departure warning system. To eliminate perspective effect, input image is converted into Bird's View by inverse perspective mapping. Next, suitable features are extracted for lane detection. Lane feature that correspond to area of interest and RANSAC are used to detect lane candidates. And driving lane is decided by clustering of lane candidates. Finally, detected lane is tracked using the Kalman filter. Experimental results show that the proposed algorithm can be processed within 30ms and its detection rate is approximately 90% on the highway in a variety of environments such as day and night.

  • PDF

Water Level Tracking System based on Morphology and Template Matching

  • Ansari, Israfil;Jeong, Yunju;Lee, Yeunghak;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1431-1438
    • /
    • 2018
  • In this paper, we proposed a river water level detection and tracking of the river or dams based on image processing system. In past, most of the water level detection system used various water sensors. Those water sensors works perfectly but have many drawbacks such as high cost and harsh weather. Water level monitoring system helps in forecasting early river disasters and maintenance of the water body area. However, the early river disaster warning system introduces many conflicting requirements. Surveillance camera based water level detection system depends on either the area of interest from the water body or on optical flow algorithm. This proposed system is focused on water scaling area of a river or dam to detect water level. After the detection of scale area from water body, the proposed algorithm will immediately focus on the digits available on that area. Using the numbers on the scale, water level of the river is predicted. This proposed system is successfully tested on different water bodies to detect the water level area and predicted the water level.

Tracing Fiscal Sustainability in Malaysia

  • LAU, Evan;LEE, Alvina Syn-Yee
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • One of the concerns in the economic policy circle is the fiscal sustainability. This current research revisit the notion of fiscal sustainability for Malaysia using the Indicator of Fiscal Sustainability (IFS) developed by Croce and Juan-Ramón (2003) where we employ samples of time-series data from 1970 to 2017. The findings reveal that 40 out of 48 years, during which the calculated IFS algorithm is above the threshold of 1, imply Malaysia was fiscally unsustainable. Despite having been fiscally unsustainable, Malaysia's fiscal stance shows improvement as a result of fiscal consolidation and fiscal reforms during the sample period. This is shown by the improved calculated IFS algorithm on average, which the value improved from 1.465 in 1970-1993 to 1.377 in 1998-2004 and to 1.146 in the 2006-2013. From the policy front, this indicator can serve as a precautionary early warning measure in formulating future fiscal path for Malaysia. This can be executed by targeting debt ratio and shifting the allocation of expenditures away from less efficient toward more growth-enhancing ones, which eventually would regain fiscal space to counter any incoming economic shocks in the future. This can enhance the fiscal transparency and assist in formulating a fiscal policy strategy in Malaysia.

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

Development of Multiple RLS and Actuator Performance Index-based Adaptive Actuator Fault-Tolerant Control and Detection Algorithms for Longitudinal Autonomous Driving (다중 순환 최소 자승 및 성능 지수 기반 종방향 자율주행을 위한 적응형 구동기 고장 허용 제어 및 탐지 알고리즘 개발)

  • Oh, Sechan;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.26-38
    • /
    • 2022
  • This paper proposes multiple RLS and actuator performance index-based adaptive actuator fault-tolerant control and detection algorithms for longitudinal autonomous driving. The proposed algorithm computes the desired acceleration using feedback law for longitudinal autonomous driving. When actuator fault or performance degradation exists, it is designed that the desired acceleration is adjusted with the calculated feedback gains based on multiple RLS and gradient descent method for fault-tolerant control. In order to define the performance index, the error between the desired and actual accelerations is used. The window-based weighted error standard deviation is computed with the design parameters. Fault level decision algorithm that can represent three fault levels such as normal, warning, emergency levels is proposed in this study. Performance evaluation under various driving scenarios with actuator fault was conducted based on co-simulation of Matlab/Simulink and commercial software (CarMaker).