• Title/Summary/Keyword: Warning algorithm

Search Result 219, Processing Time 0.025 seconds

Development of Train Velocity and Location Tracking Algorithm for a Constant Warning Time System (철도건널목 정시간 제어를 위한 열차속도 및 위치추적방식 개발)

  • Oh, Ju-Taek;Kim, Tae-Kwon;Park, Dong-Joo;Shin, Seong-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.17-28
    • /
    • 2005
  • About 91.1% of Railway-Highway Crossings (RHC) in Korea use a Constant Distance Warning System(CDWS), while about 8.9% use a Constant Warning Time System(CWTS). The CDWS does not recognize speed differences of approaching trains and provides only waiting times to vehicles and pedestrians based on the highest speed of approaching trains. Under the CDWS, therefore, low speed trains provide unnecessary waiting times at crossings which often generates complains to vehicle drivers and pedestrians and may cause wrong decisions to pass the crossings. The objective of this research is to improve the safety of the RHC by developing accurate a CWTS. In this research a train speed and location detection system was developed with ultra sonic detectors. Locations of the detectors was decided based on the highest speed and the minimum warning time of Saemaul of 160 km/h. To validate the algorithms of the newly developed systems the lab tests were conducted. The results show that the train detection system provides accurate locations of trains and the maximum error between real speeds of trains and those of the system was 0.07m/s.

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.

A Study on Automatic Control of Microtunneling System based on Fuzzy Controller (퍼지 제어기를 이용한 터널 굴진기의 자동제어에 관한 연구)

  • 도준형;한정수;강영훈;변증남;남장현;박태동
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.103-112
    • /
    • 2004
  • In this paper, we propose the automatic control algorithm of torque/pipejacking thrust and slurry charging/discharging pressure in the microtunneling system to assist operators assuring the quality of microtunneling construction. To develop this algorithm, we analyze the microtunneling system which is manually controlled by expert and design fuzzy controller. warning system, and halt sensing system The proposed automatic tunneling algorithm shows good tunneling results comparable with those of experts.

Robust Vehicle Occupant Detection based on RGB-Depth-Thermal Camera (다양한 환경에서 강건한 RGB-Depth-Thermal 카메라 기반의 차량 탑승자 점유 검출)

  • Song, Changho;Kim, Seung-Hun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Recently, the safety in vehicle also has become a hot topic as self-driving car is developed. In passive safety systems such as airbags and seat belts, the system is being changed into an active system that actively grasps the status and behavior of the passengers including the driver to mitigate the risk. Furthermore, it is expected that it will be possible to provide customized services such as seat deformation, air conditioning operation and D.W.D (Distraction While Driving) warning suitable for the passenger by using occupant information. In this paper, we propose robust vehicle occupant detection algorithm based on RGB-Depth-Thermal camera for obtaining the passengers information. The RGB-Depth-Thermal camera sensor system was configured to be robust against various environment. Also, one of the deep learning algorithms, OpenPose, was used for occupant detection. This algorithm is advantageous not only for RGB image but also for thermal image even using existing learned model. The algorithm will be supplemented to acquire high level information such as passenger attitude detection and face recognition mentioned in the introduction and provide customized active convenience service.

The study for image recognition of unpaved road direction for endurance test vehicles using artificial neural network (내구시험의 무인 주행화를 위한 비포장 주행 환경 자동 인식에 관한 연구)

  • Lee, Sang Ho;Lee, Jeong Hwan;Goo, Sang Hwa
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, an algorithm is presented to recognize road based on unpaved test courses image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, gray level slicing, masking and identification of unpaved test courses. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing unpaved road. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning or assistance system.

  • PDF

Realtime Robust Curved Lane Detection Algorithm using Gaussian Mixture Model (가우시안 혼합모델을 이용한 강인한 실시간 곡선차선 검출 알고리즘)

  • Jang, Chanhee;Lee, Sunju;Choi, Changbeom;Kim, Young-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • ADAS (Advanced Driver Assistance Systems) requires not only real-time robust lane detection, both straight and curved, but also predicting upcoming steering direction by detecting the curvature of lanes. In this paper, a curvature lane detection algorithm is proposed to enhance the accuracy and detection rate based on using inverse perspective images and Gaussian Mixture Model (GMM) to segment the lanes from the background under various illumination condition. To increase the speed and accuracy of the lane detection, this paper used template matching, RANSAC and proposed post processing method. Through experiments, it is validated that the proposed algorithm can detect both straight and curved lanes as well as predicting the upcoming direction with 92.95% of detection accuracy and 50fps speed.

Real-time online damage localisation using vibration measurements of structures under variable environmental conditions

  • K. Lakshmi
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.227-241
    • /
    • 2024
  • Safety and structural integrity of civil structures, like bridges and buildings, can be substantially enhanced by employing appropriate structural health monitoring (SHM) techniques for timely diagnosis of incipient damages. The information gathered from health monitoring of important infrastructure helps in making informed decisions on their maintenance. This ensures smooth, uninterrupted operation of the civil infrastructure and also cuts down the overall maintenance cost. With an early warning system, SHM can protect human life during major structural failures. A real-time online damage localization technique is proposed using only the vibration measurements in this paper. The concept of the 'Degree of Scatter' (DoS) of the vibration measurements is used to generate a spatial profile, and fractal dimension theory is used for damage detection and localization in the proposed two-phase algorithm. Further, it ensures robustness against environmental and operational variability (EoV). The proposed method works only with output-only responses and does not require correlated finite element models. Investigations are carried out to test the presented algorithm, using the synthetic data generated from a simply supported beam, a 25-storey shear building model, and also experimental data obtained from the lab-level experiments on a steel I-beam and a ten-storey framed structure. The investigations suggest that the proposed damage localization algorithm is capable of isolating the influence of the confounding factors associated with EoV while detecting and localizing damage even with noisy measurements.

Algorithm Design and Implementation for Safe Left Turn at an Intersection Based on Vehicle-to-Vehicle Communications (교차로에서의 안전 좌회전을 위한 차량간 통신 기반 알고리즘 설계 및 구현)

  • Seo, Hyun-Soo;Kim, Hyo-Un;Noh, Dong-Gyu;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.165-171
    • /
    • 2013
  • WAVE(Wireless Access in Vehicular Environments) is a representative V2V communication protocol and its standards of MAC and PHY parts except for security were published. In order to control traffic flow and ensure driver's safety using V2V communication, various projects are conducting. In particular, safety application has been researched. Therefore, in this paper, we designed the safety application algorithm, which informs a driver of the dangerous status when driver tries to turn left in an intersection and we also implemented the algorithm. Proposed algorithm configures a model for a host vehicle and a vehicle coming in opposite lane and in case that there is collision hazard it provides warning message to driver by using HMI. In order to evaluate the proposed algorithm's performance, we configured the test bed using test vehicles and we tested the algorithm on proving ground with the composed test scenarios. As test results, our system showed excellent performance. If the infrastructures for V2I communications are constructed, we will optimize our system more precisely and stably.

A neck healthy warning algorithm for identifying text neck posture prevention (거북목 자세를 예방하기 위한 목 건강 경고 알고리즘)

  • Jae-Eun Lee;Jong-Nam Kim;Hong-Seok Choi;Young-Bong Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.115-122
    • /
    • 2022
  • With the outbreak of COVID-19 a few years ago, video conferencing and electronic document work have increased, and for this reason, the proportion of computer work among modern people's daily routines is increasing. However, as more and more people work on computers in the wrong posture for a long time, the number of patients with poor eyesight and text neck is increasing. Until recently, many studies have been published to correct posture, but most of them have limitations that users may experience discomfort because they have to correct posture by wearing equipment. A posture correction sensor algorithm is proposed to prevent access to the minimum distance between a computer monitor and a person using an ultrasonic sensor device. At this time, an algorithm for minimizing false alarms among warning alarms that sound at the minimum distance is also proposed. Because the ultrasonic sensor device is used, posture correction can be performed without attaching a device to the body, and the user can relieve discomfort. In addition, experimental results showed that accuracy can be improved by reducing false alarms by removing more than half of the noise generated during distance measurement.

Establishing meteorological drought severity considering the level of emergency water supply (비상급수의 규모를 고려한 기상학적 가뭄 강도 수립)

  • Lee, Seungmin;Wang, Wonjoon;Kim, Donghyun;Han, Heechan;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.619-629
    • /
    • 2023
  • Recent intensification of climate change has led to an increase in damages caused by droughts. Currently, in Korea, the Standardized Precipitation Index (SPI) is used as a criterion to classify the intensity of droughts. Based on the accumulated precipitation over the past six months (SPI-6), meteorological drought intensities are classified into four categories: concern, caution, alert, and severe. However, there is a limitation in classifying drought intensity solely based on precipitation. To overcome the limitations of the meteorological drought warning criteria based on SPI, this study collected emergency water supply damage data from the National Drought Information Portal (NDIP) to classify drought intensity. Factors of SPI, such as precipitation, and factors used to calculate evapotranspiration, such as temperature and humidity, were indexed using min-max normalization. Coefficients for each factor were determined based on the Genetic Algorithm (GA). The drought intensity based on emergency water supply was used as the dependent variable, and the coefficients of each meteorological factor determined by GA were used as coefficients to derive a new Drought Severity Classification Index (DSCI). After deriving the DSCI, cumulative distribution functions were used to present intensity stage classification boundaries. It is anticipated that using the proposed DSCI in this study will allow for more accurate drought intensity classification than the traditional SPI, supporting decision-making for disaster management personnel.