DOI QR코드

DOI QR Code

Establishing meteorological drought severity considering the level of emergency water supply

비상급수의 규모를 고려한 기상학적 가뭄 강도 수립

  • Lee, Seungmin (Program in Smart City Engineering, Inha University) ;
  • Wang, Wonjoon (Program in Smart City Engineering, Inha University) ;
  • Kim, Donghyun (Institute of Water Resources System, Inha University) ;
  • Han, Heechan (Department of Civil Engineering, Chosun University) ;
  • Kim, Soojun (Department of Civil Engineering, Inha University) ;
  • Kim, Hung Soo (Department of Civil Engineering, Inha University)
  • 이승민 (인하대학교 스마트시티공학과) ;
  • 왕원준 (인하대학교 스마트시티공학과) ;
  • 김동현 (인하대학교 수자원시스템 연구소) ;
  • 한희찬 (조선대학교 토목공학과) ;
  • 김수전 (인하대학교 사회인프라공학과) ;
  • 김형수 (인하대학교 사회인프라공학과)
  • Received : 2023.08.07
  • Accepted : 2023.10.04
  • Published : 2023.10.31

Abstract

Recent intensification of climate change has led to an increase in damages caused by droughts. Currently, in Korea, the Standardized Precipitation Index (SPI) is used as a criterion to classify the intensity of droughts. Based on the accumulated precipitation over the past six months (SPI-6), meteorological drought intensities are classified into four categories: concern, caution, alert, and severe. However, there is a limitation in classifying drought intensity solely based on precipitation. To overcome the limitations of the meteorological drought warning criteria based on SPI, this study collected emergency water supply damage data from the National Drought Information Portal (NDIP) to classify drought intensity. Factors of SPI, such as precipitation, and factors used to calculate evapotranspiration, such as temperature and humidity, were indexed using min-max normalization. Coefficients for each factor were determined based on the Genetic Algorithm (GA). The drought intensity based on emergency water supply was used as the dependent variable, and the coefficients of each meteorological factor determined by GA were used as coefficients to derive a new Drought Severity Classification Index (DSCI). After deriving the DSCI, cumulative distribution functions were used to present intensity stage classification boundaries. It is anticipated that using the proposed DSCI in this study will allow for more accurate drought intensity classification than the traditional SPI, supporting decision-making for disaster management personnel.

최근 기후변화가 심화됨에 따라 가뭄으로 유발되는 피해가 증가하고 있다. 현재 국내의 가뭄 강도를 결정하기 위해 표준강수지수(Standardized Precipitation Index, SPI)를 기준으로 분류를 수행하고 있다. 현재 국내에서는 최근 6개월 동안의 누적강수량을 기준(SPI-6)으로 관심, 주의, 경계, 심각의 기상학적 가뭄의 강도를 분류하고 있다. 그러나 강수량만을 기초자료로 활용하기 때문에 가뭄 강도를 분류하는 데 한계가 있다는 문제점이 있다. 따라서 본 연구에서는 SPI에 따른 국내 기상학적 가뭄 예・경보 기준의 한계점을 극복하고자 국가가뭄정보포털(National Drought Information Portal, NDIP)에서 제공하는 비상급수 피해자료를 수집하여 가뭄의 강도를 분류하였다. 그리고 SPI의 인자인 강수량과 증발산량 산정에 사용되는 인자인 온도, 습도 등을 min-max 정규화로 지수화한 후 유전 알고리즘(Genetic Algorithm, GA) 기반으로 각 인자들에 대한 계수를 산정하였다. 비상급수에 따른 가뭄의 강도를 분류하여 종속변수로 활용하고, GA에 의한 각 기상인자들의 계수를 활용하여 새로운 가뭄 강도 분류 지수(Drought Severity Classification Index, DSCI)를 도출하고자 하였다. DSCI를 도출한 후 누적분포함수를 활용하여 분위별 경계를 강도 단계 분류 기준으로 제시하였다. 본 연구에서 제시한 DSCI를 활용하면 기존 SPI보다 가뭄 강도를 정확하게 분류할 수 있어, 재난 담당자들의 의사결정을 지원할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 행정안전부 자연재난 정책연계형 기술개발사업의 지원을 받아 수행된 연구입니다(2022-MOIS35-005).

References

  1. Agricultural Drought Management System (ADMS) (2023). Drought warning, accessed 4 July 2023, <https://adms.ekr.or.kr/baseInfo /baseInfo2Main.do>
  2. Aon (2021). Weather, climate & catastrophe insignt. 2018 Annual Report, London, UK.
  3. Bae, S.J., Lee, S.H., Yoo, S.H., and Kim, T.G. (2018). "Analysis of drought characteristics using time series of modified SPEI in South Korea from 1981 to 2010." Water, Vol. 10, No. 3, 327.
  4. Choi, H.S., and Kim, S.M. (2009). "Definition of drought disaster, defining conceptualizing and clarifying." Water and Future: Journal of Korea Water Resources Association, Vol. 42, No. 12, pp. 90-99.
  5. Cohen, I., Huang, Y., Chen, J., and Benesty, J. (2009). "Pearson correlation coefficient." Noise Reduction in Speech Processing, Springer, Germany, pp. 1-4.
  6. Farahmand, A., AghaKouchak, A., and Teixeira, J. (2015). "A vantage from space can detect earlier drought onset: An approach using relative humidity." Scientific Reports, Vol. 5, No. 1, 8553.
  7. Holland, J.H. (1975). Adaptation in natural artificial systems. The MIT Press, MA, U.S., pp. 1-19.
  8. Kim, D.H., Lee, J.S., Kim, J.S., Lee, M.J., Wang, W.J., and Kim, H.S. (2022). "Comparative analysis of long short-term memory and storage function model for flood water level forecasting of Bokha stream in NamHan River, Korea." Journal of Hydrology, Vol. 606, 127415.
  9. Kim, H.S., Park, J.Y., Yoo, J.Y., and Kim, T.W. (2015a). "Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea." Journal of Hydroenvironment Research, Vol. 9, No. 1, pp. 28-35. https://doi.org/10.1016/j.jher.2013.07.003
  10. Kim, S.D., Kim, B.K., Ahn, T.J., and Kim, H.S. (2011). "Spatiotemporal characterization of Korean drought using severity - area - duration curve analysis." Water and Environment Journal, Vol. 25, No. 1, pp. 22-30. https://doi.org/10.1111/j.1747-6593.2009.00184.x
  11. Kim, S.J., Kim, H.S., Kwak, J.W., Kim, Y.S., Noh, H.S., and Lee, J.S. (2015b). "Analysis of drought length using the BDS statistic and close returns test." KSCE Journal of Civil Engineering, Vol. 19, No. 2, pp. 446-455. https://doi.org/10.1007/s12205-014-0587-y
  12. Kim, S.J., Kwak, J.W., Noh, H.S., and Kim, H.S. (2014). "Evaluation of drought and flood risks in a multipurpose dam under climate change: A case study of Chungju Dam in Korea." Natural Hazards, Vol. 73, No. 3, pp. 1663-1678. https://doi.org/10.1007/s11069-014-1164-x
  13. Kim, S.W., and Kim, H.S. (2007a). "Neural network-genetic algorithm model for modeling of nonlinear evaporation and evapotranspiration time series 1. Theory and application of the model." Journal of Korea Water Resources Association, Vol. 40. No. 1, pp. 73-88. https://doi.org/10.3741/JKWRA.2007.40.1.073
  14. Kim, S.W., and Kim, H.S. (2007b). "Neural network-genetic algorithm model for modeling of nonlinear evaporation and evapotranspiration time series 2. Optimal model construction by uncertainty analysis." Journal of Korea Water Resources Association, Vol. 40. No. 1, pp. 89-99. https://doi.org/10.3741/JKWRA.2007.40.1.089
  15. Korea Meteorogical Administration (KMA) (2023a). Drought warning, accessed 4 July 2023, .
  16. Korea Meteorogical Administration (KMA) (2023b). Ground meteorogical station, accessed 4 July 2023, .
  17. Kwak, J.W. (2008). A study on the parameter calibration of flood forecasting models. Master Thesis, Inha University, pp. 1-114.
  18. Kwak, J.W., Joo, H.J., Jung, J.W., Lee, J.S., Kim, S.J., and Kim, H.S. (2021). "A case study: Bivariate drought identification on the Andong dam, South Korea." Stochastic Environmental Research and Risk Assessment, Vol. 35, No. 209, pp. 549-560. https://doi.org/10.1007/s00477-020-01917-7
  19. Kwak, J.W., Kim, S.J., Jung, J.W., Singh, V.P., Lee, D.R., and Kim, H.S. (2016a). "Assessment of meteorological drought in Korea under climate change." Advances in Meteorology, Vol. 2016, pp. 1-13. https://doi.org/10.1155/2016/1879024
  20. Kwak, J.W., Kim, S.J., Kim, D.G., Singh, V.P., and Kim, H.S. (2014). "Hydrological drought analysis in Namhan River basin, Korea." Journal of Hydrologic Engineering, Vol. 19, No. 8, 05014001.
  21. Kwak, J.W., Kim, S.J., Kim, G.H., Singh, V.P., Park, J.S., and Kim, H.S. (2016b). "Bivariate drought analysis using streamflow reconstruction with tree ring indices in the Sacramento Basin, California, USA." Water, Vol. 8, No. 122, pp. 1-16. https://doi.org/10.3390/w8040122
  22. Kwak, J.W., Kim, S.J., Singh, V.P., Kim, H.S., Kim, D.G., Hong, S.J., and Lee, K.H. (2015). "Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea." KSCE Journal of Civil Engineering, Vol. 19, No. 2, pp. 376-384. https://doi.org/10.1007/s12205-015-0446-5
  23. Kwon, M., Jun, K., Hwang, M., and Kim, T. (2015). "Assessment of meteorological drought using cumulative severity of daily standardized precipitation index." Journal of the Korean Society of Hazard Mitigation, Vol. 15, No. 2, pp. 123-131. https://doi.org/10.9798/KOSHAM.2015.15.2.123
  24. McKee, T., Doesken, N., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Proceedings of the 8th Conference on Applied Climatology, AC, CA, U.S., Vol. 17, No. 22, pp. 179-183.
  25. Merabtene, T., Kawamura, A., Jinno, K., and Olsson, J. (2002). "Risk assessment for optimal drought management of an integrated water resources system using a genetic algorithm." Hydrological Processes, Vol. 16, No. 11, pp. 2189-2208. https://doi.org/10.1002/hyp.1150
  26. Mishra, A.K., and Singh, V.P. (2010). "A review of drought concepts." Journal of Hydrology, Vol. 391, No. 1-2, pp. 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
  27. Naresh Kumar, M., Murthy, C.S., Sesha Sai, M.V.R., and Roy, P.S. (2009). "On the use of Standardized Precipitation Index (SPI) for drought intensity assessment." Meteorological Applications: A Journal of Forecasting, Practical Applications, Training Techniques and Modelling, Vol. 16, No. 3, pp. 381-389. https://doi.org/10.1002/met.136
  28. National Disaster Management Research Institute (NDMI) (2017). Development of assessment techniques for drought forecastingwarning information (I). 2017 Annual Report.
  29. National Drought Information Portal (NDIP) (2023). Drought response, accessed 4 July 2023, .
  30. Wilhite, D.A. (2000). "Drought as a natural hazard: Concepts and definitions." Drought Mitigation Center Faculty Publications, National Drought Mitigation Center, London, UK, pp. 3-18.
  31. Yoo, J.Y., Kim, D.H., Kim, H.S., and Kim, T.W. (2016). "Application of copula functions to construct confidence intervals of bivariate drought frequency curve." Journal of Hydro-environment Research, Vol. 11, pp. 113-122. https://doi.org/10.1016/j.jher.2014.10.002
  32. Yoo, J.Y., Park, J.Y., and Kim, T.W. (2010). "Comparative analysis of drought characteristics considering various drought definitions." Journal of Korea Water Resources Association Conference, pp. 367-371.
  33. Zhang, Q., Li, J., Singh, V.P., and Bai, Y. (2012). "SPI-based evaluation of drought events in Xinjiang, China." Natural Hazards, Vol. 64, pp. 481-492. https://doi.org/10.1007/s11069-012-0251-0