• Title/Summary/Keyword: Warm ischemia

Search Result 17, Processing Time 0.022 seconds

Effect Oxygen in Inflation Gas for Warm Ischemia-reperfusion Injury in the Lung of a Mongrel Dog (황견에서 폐장의 산소가 온열 허혈후 재관류 시폐손상에 미치는 영향)

  • 성숙환;김현조;김영태
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Background: Hyperinflation during lung ischemia has been known to improve pulmonary functions after reperfusion which may be exerted through a pulmonary vasodilation and avoidance of atelectasis by an increased surfactant release and been known whether the improvement of pulmonary function was the effect of hyperinflation itself or the oxygen content in inflation gas. Therefore we attempted to clarify the effect of hyperinflation with oxygen in pulmonary inflation gas during warm ischemia on pulmonary function after reperfusion to solve the problem of ischemia-reperfusion injury after lung transplantation. Material and Method: sixteen mongrel dogs were randomly divided into two groups: the left lung was inflated to 30-35 cm H2O with 100% oxygen in oxygen group and 100% nitrogen in nitrogen group. The inflated left lung was maintained with warm ischemia for 100 minutes. Arterial and mixed venous blood gas analysis and hemodynamics were measured before ischemia and 30, 60, 120, 180 and 240 minutes afer reperfusion. Lung biopsy was taken for the measurement of lung water content after the end of reperfusion. Result: In oxygen group arterial oxygen tension the difference of arterial and mixed venous oxygen tension and the difference of alveolar-arterial oxygen tension at 30-minute after reperfusion were not significantly different from those before ischemia and were stable during the 40hour reperfusion. However in nitrogen group these values were significantly deteriorated at 30-minute after reperfusion. there was no significant difference between two groups in hemodynamic data peak airway pressure and lung water content. Conclusion : The results indicated that the oxygenation one of the most important pulmonary functions was improved by pulmonary inflation with 100% oxygen during warm ischemia but the hemodynamics were not. Oxygen as a metabolic substrate during warm ischenia was believed to make the pulmonary tissues to maintain aerobic metabolism and to prevent ischemic damage of alveoli and pulmonary capillary.

  • PDF

Effect of S-Adenosylmethionine on Hepatic Injury from Sequential Cold and Warm Ischemia

  • Lee, Yu-Bum;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.495-500
    • /
    • 2000
  • We investigated whether S-adenosylmethionine (SAM) treatment improved ischemic injury using perfused rat liver after sequential periods of 24 h cold and 20 min re-warming ischemia. SAM (100 $\mu\textrm{mol/L}$) was added to University of Wisconsin (UW) solution and Ringers lactate solution. After cold and sequential warm ischemia, releases of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) markedly increased during repefusion. The increase in PNP was significantly reduced by SAM treatment. While the concentration of reduced glutathione (GSH) in ischemic livers significantly decreased, the concentration of glutathione disulfide (GSSG) increased. This decrease in GSH and increase in GSSG were suppressed by SAM treatment. Lipid peroxidation was elevated in cold and warm ischemic and reperfused livers, but this elevation was also prevented by SAM treatment. Hepatic ATP levels were decreased in the ischemic and reperfused livers to 42% of the control levels. However, treatment with SAM resulted in significantly higher ATP levels and preserved the concentration of AMP in ischemic livers. Our findings suggest that SAM prevents oxidative stress and lipid peroxidation and helps preserve hepatic energy metabolism.

  • PDF

Role of Kupffer Cells in Cold/warm Ischemia-Reperfusion Injury or Rat Liver

  • Lee, Young-Goo;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.620-625
    • /
    • 2000
  • The mechanisms of liver injury from cold storage and reperfusion are not completely under-stood. The aim of the present study was to investigate whether the inactivation of Kupffer cells (KCs) by gadolinium chloride ($GdCl_3$) modulates ischemia-reperfusion injury in the rat liver. Hepatic function was assessed using an isolated perfused rat liver model. In livers subjected to cold storage at $4^{\circ}C$ in University of Wisconsin solution for 24 hrs and to 20 min rewarm-ing ischemia, oxygen uptake was markedly decreased, Kupffer cell phagocytosis was stimulated, releases of purine nucleoside phosphorylase and lactate dehydrogenase were increased as compared with control livers. Pretreatment of rats with $GdCl_3$) , a selective KC toxicant, suppressed kupffer cell activity, and reduced the grade of hepatic injury induced by ischemia-reperfusion. While the initial mixed function oxidation of 7-ethoxycoumarin was not different from that found in the control livers, the subsequent conjugation of its meta-bolite to sulfate and glucuronide esters was suppressed by ischemia-reperfusion, CdCl$_3$restored sulfation and glucuronidation capacities to the level of the control liver. Our findings suggest that Kupffer cells could play an important role in cold/warm ischemia-reperfusion hepatic injury.

  • PDF

Hesperidin improves warm ischemia/reperfusion-induced oxidative renal injury in rats

  • Gandhi, Chintan;Zalawadia, Rishit;Balaraman, R.
    • Advances in Traditional Medicine
    • /
    • v.9 no.4
    • /
    • pp.292-302
    • /
    • 2009
  • Ischemia/reperfusion injury, which is commonly seen in the field of renal surgery or transplantation, is a major cause of acute renal failure. Previous studies showed that antioxidant treatments attenuated renal ischemia/reperfusion injury. The objective of this study was to examine the role of hesperidin in modulating reactive oxygen species induced inflammation and apoptosis after renal ischemia/reperfusion injury. Rats were subjected to right nephrectomy, 15 days later 45 min of renal ischemia and 24 h reperfusion with or without treatment with hesperidin. Renal function, inflammation and apoptosis were compared at 24 h after reperfusion injury. Hesperidin improved the renal dysfunction and reduced inflammation and apoptosis after ischemia/reperfusion injury. In conclusion, hesperidin shows potent anti-apoptotic and antiinflammatory properties due to antioxidant property. These findings may have major implications in the treatment of human ischemic acute renal failure.

Effects of a Pan Selectin Inhibitor on Renal Injury after Kidney Transplantation in Dogs (개의 신장이식에서 신장손상에 대한 Pan Selectin Inhibitor의 효과)

  • Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • v.19 no.3
    • /
    • pp.299-302
    • /
    • 2002
  • Selectins are differentially expressed carbohydrate binding proteins involved in the initiation of tissue inflammation by mediating the rolling and tethering of leukocytes on the vascular endothelium. This primary event in initiation of inflammation, as occurs during reperfusion injury, can be therapeutically targeted using selectin inhibitors, which generally block binding of sLex to E-, P-, and L-selectins. The objective of this study was to determine the role of selectins in renal ischemia/reperfusion injury after kidney transplantation. Canine kidneys were subjected to 60-min warm ischemia, flushed with UW solution, cold stored for 24 h, and autotransplanted into the nephrectomized donor. Renal autografts were monitored for 7 days by serum creatinine in the first study and by histology and myeloperoxidase activity after 4-hour reperfusion in the second study. In each study, one group of animals received TBC1269 (selectin inhibitor) and the other received saline vehicle. Serum creatinine rose quickly after transplantation and was not different between the groups. TBC1269 abolished a reperfusion-induced 2-fold increase in renal cortex neutrophil infiltration and improved histologic signs of ischemia after 4 hours of reperfusion. Selectin blockade does not improve the course of injury caused by warm renal ischemia. A minor benefit associated with the inhibition of early inflammation during reperfusion after kidney transplantation seems to occur.

Antioxidant Effects of Ascorbic Acid on Renal-Ischemia Reperfusion Injury in Rabbit Model

  • Kim, Jong-Man;Lee, Jae-Yeon;Kim, Duck-Hwan;Jeong, Seong-Mok;Park, Chang-Sik;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • Renal ischemia-reperfusion (I/R) injury is great clinical important because viability of the organ depends on the tolerance to ischemia-reperfusion injury, an inevitable processing during surgery. The purpose of this study was to investigate the effects of premedicated ascorbic acid alone in I/R injury model induced by cross-clamping of renal vessels. In the rabbit models, 2-4 kg New Zealand white rabbits were subjected to 30 minutes of warm unilateral renal ischemia followed by removal of contralateral kidney and then divided into five groups, control (2) arid treatment groups (3). In control group 1, the rabbits only received right nephrectomy. In control group 2, the rabbits received I/R on left kidney after the right nephrectomy. In treatment group 1, the rabbits received ascorbic acid 50 mg/kg IV before the operation. In treatment group 2, the rabbits received ascorbic acid 100 mg/kg IV before the operation. In treatment group 3, the rabbits received ascorbic acid 200 mg/kg IV before the operation. Blood samples were collected from these rabbits for measurement of kidney function tests at the 0, 1 st, 3rd and 7th day and antioxidant enzyme( SOD, GSHPx, CAT) at 24 hours. Kidney function tests (serum creatinine and BUN) showed a significant difference between group 2 and group 4, 5. Activity of antioxidant enzymes in plasma were significant decrease in group 4, 5 compare to group 2. The result of this study suggested that the exogenous ascorbic acid had a role of attenuation of renal I/R injury in rabbit model.

Normothermic Cardiac Surgery with Warm Blood Cardioplegia in Patient with Cold Agglutinins

  • Cho, Sang-Ho;Kim, Dae Hyun;Kwak, Young Tae
    • Journal of Chest Surgery
    • /
    • v.47 no.2
    • /
    • pp.133-136
    • /
    • 2014
  • Cold agglutinins are predominately immunoglobulin M autoantibodies that react at cold temperatures with surface antigens on the red blood cell. This can lead to hemagglutination at low temperatures, followed by complement fixation and subsequent hemolysis on rewarming. Development of hemagglutination or hemolysis in patients with cold agglutinins is a risk of cardiac surgery under hypothermia. In addition, there is the potential for intracoronary hemagglutination with inadequate distribution of cardioplegic solutions, thrombosis, embolism, ischemia, or infarction. We report a patient with incidentally detected cold agglutinin who underwent normothermic cardiac surgery with warm blood cardioplegia.

Enact of Ischemic Preconditioning on Myocardial Protection A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 -적출 쥐 심장에서 상온에서의 심근허혈과 중등도 제체온하에서 심근정지액 사용 시의 비교 연구-)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.242-254
    • /
    • 2003
  • Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of 25℃ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups. All hearts were perfused at 37℃ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained. Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37℃, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4℃) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at 25℃, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minutes (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37℃ normothermic ischemia and 30 minutes of reperfusion (n=6). Group 4 served as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, improving the LVSP, LVEDP, RPP, and LVdp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.

Effect of Ischemic Preconditioning on Myocardial Protection - A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 - 적출 쥐 심장에서 상온에서의 심근허혈과 중등도 저체온하에서 심근정지액 사용 시의 비교 연구 -)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.5
    • /
    • pp.242-254
    • /
    • 2003
  • Background: Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of $25^{\circ}C$ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups All hearts were perfused at 37$^{\circ}C$ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained, Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37$^{\circ}C$, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4$^{\circ}C$) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at $25^{\circ}C$, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minuts (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37$^{\circ}C$ normothermic ischemia and 30 minutes of reperfusion (n=6) Group 4 soloed as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, Improving the LVSP, LVEDP, RPP, and LV dp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.

Expression of Intercellular Adhesion Molecule- 1 after Ischemia Reperfusion Injury of the Canine Lung (폐장의 허혈-재관류 손상과 세포간부착물질-1 의 발현)

  • 성숙환;김영태;김문수;이재익;강문철
    • Journal of Chest Surgery
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • Background: Predicting the important role of intercellular adhesion molecule-1 expression on the acute ischemia-reperfusion injury, we set out to demonstrate it by assessing the degree of expression of ICAM-1 after warm ischemia-reperfusion in canine unilateral lung ischemia model. Material and Method: Left unilateral lung ischemia was induced by clamping the left hilum for 100 minutes in seven adult mongrel dogs. After reperfusion, various hemodynamic pararmeters and blood gases were analyzed for 4 hours, while intermittently clamping the right hilum in order to allow observation of the injured Ieft lung function. The pulmonary venous blood was collected serially to measure TNF- and cICAM-1 level. After 4 hours of reperfusion, the lung tissue was biopsied to assess cICAM-1 expression, and to measure tissue malondialdehyde(MDA) and ATP level. Result: The parameters including arterial oxygen partial pressure, pulmonary vascular resistance and tissue MDA and ATP level suggested severe lung damage. Serum TNF-$\alpha$ level was 8.76$\pm$2.37 ng/ml at 60 minutes after reperfusion and decreased thereafter. The cICAM-1 level showed no change after the reperfusion during the experiment. The tissue cICAM-1 expression was confirmed in 5 dogs. Conclusion: The increase of TNF-$\alpha$ Ievel and expression of tissue ICAM-1 were demonstrated after ischemia reperfusion injury in canine lung model.