• Title/Summary/Keyword: Warm area

Search Result 576, Processing Time 0.024 seconds

Quality of root canal fillings using three gutta-percha obturation techniques

  • Ho, Edith Siu Shan;Chang, Jeffrey Wen Wei;Cheung, Gary Shun Pan
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • Objectives: The goal of this study was to compare the density of gutta-percha root fillings obturated with the following techniques: cold lateral (CL) compaction, ultrasonic lateral (UL) compaction, and warm vertical (WV) compaction. Materials and Methods: Thirty-three extracted mandibular first molars, with two separate mesial canals in each, were selected. After instrumentation, the canals were stratified into three groups based on canal length and curvature, and underwent obturation with one of the techniques. No sealer was used in order to avoid masking any voids. The teeth were imaged pre- and post-obturation using micro-computed tomography. The reconstructed three-dimensional images were analyzed volumetrically to determine the amount of gutta-percha present in every 2 mm segment of the canal. P values < 0.05 were considered to indicate statistical significance. Results: The overall mean volume fraction of gutta-percha was $68.51{\pm}6.75%$ for CL, $86.56{\pm}5.00%$ for UL, and $88.91{\pm}5.16%$ for WV. Significant differences were found between CL and UL and between CL and WV (p < 0.05), but not between UL and WV (p = 0.526). The gutta-percha density of the roots treated with WV and UL increased towards the coronal aspect, but this trend was not noted in the CL group. Conclusions: WV compaction and UL compaction produced a significantly denser gutta-percha root filling than CL compaction. The density of gutta-percha was observed to increase towards the coronal aspect when the former two techniques were used.

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

Conodont Fauna and Its Paleoecology of the Middle Carboniferous System in Taebaek Area, Gangwon, Korea (강원도 태백 지역의 중기 석탄계의 코노돈트와 고생태)

  • Park, Soo-In;Oh, Jae-Kyung
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.337-348
    • /
    • 2000
  • The Middle Carboniferous Manhang and Geumcheon formations in Taebaek area consist of sandstones, shales, and limestones. The limestones of the formations contain abundant conodonts, fusulinids, crinoids, brachiopods, bryozoans, corals, etc. This study was carried out to investigate the microfacies of limestones and conodont faunas of the formations and to determine their paleoecology in detail. The limestones of the Manhang and Geumcheon formations of the study area consist of wackestone and packstone which are composed of crinoid fragments and other various fossil fragments. Some limestone beds of the Geumcheon Formation consist of only Chaetetes corals which indicate that the limestones deposited in a warm shallow sea. Conodonts found from limestones of the Manhang Formation are Neognathodus bothrops, N. medexultimus, Hindeodus minutus, Diplognathodus coloradoensis, D. edentulus, Idiognathodus delicatus, Streptognathodus elegantulus, and S. sp. And conodonts found from the limestones of the Geumcheon Formation are Neognathodus medexultimus, N. roundyi, N. dilatus, Gondolella bella, Diplognathodus coloradoensis, D. edentulus, Hindeodus minutus, Idiognathodus delicatus, and Streptognathodus elegantulus. Among these conodonts, Diplognathodus coloradoensis, D. edentulus, and Hindeodus minutu, are found generally from limestones which deposited in the shallow seas. According to the limestone facies and conodont faunas of the Manhang and Geumcheon formations of the study area, it can be concluded that the limestones of the formations deposited in the shallow sea.

  • PDF

Transportation and Deposition of Modern Sediments in the Southern Yellow Sea

  • Shi, Xuefa;Chen, Zhihua;Cheng, Zhenbo;Cai, Deling;Bu, Wenrui;Wang, Kunshan;Wei, Jianwei;Yi, Hi-Il
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.57-71
    • /
    • 2004
  • Based on the data obtained under the China-Korea joint project (1997-2001) and historic observations, the distribution, transportation and sedimentation of sediment in the southern Yellow Sea (SYS) are discussed, and the controversial formation mechanism of muddy sediments is also explored. The sediment transport trend analysis indicates that the net transport direction of sediment in the central SYS (a fine-grained sediment deposited area) points to $123.4^{\circ}E,\;35.1^{\circ}N$, which is a possible sedimentation center in the central SYS. The sediment transport pattern is verified by the distribution of total suspended matter (TSM) concentration and ${\delta}^{13}C$ values of particulate organic carbon (POC), the latter indicates that the bottom water plays a more important role than the surface water in transporting the terrigenous material to the central deep-water area of the SYS, and the Yellow Sea circulation is an important control factor for the sediment transport pattern in the SYS. The carbon isotope signals of organic matter in sediments indicate that the Shandong subaqueous delta has high sedimentation rate and the deposited sediments originate mainly from the modern Yellow River. The terrigenous sediments in deep-water area of the SYS originate mainly from the old Yellow River and the modern Yellow River, and only a small portion originates from the modern Yangtze River. The analytical results of TSM and stable carbon isotopes are further confirmed by another independent tracer of sediment source, polycyclic aromatic hydrocarbons (PAHs). Five light mineral provinces in the SYS can be identified and they indicate inhomogeneity in sources and sedimentary environment. The modern shelf sedimentary processes in the SYS are controlled by shelf dynamic factors. The muddy depositional systems are produced in the shelf low-energy environments, which are controlled by some meso-scale cyclonic eddies (cold eddies) in the central SYS and the area southwest of the Cheju Island. On the contrary, an anticyclonic muddy depositional system (warm eddy sediment) appears in the southeast of the SYS (the area northwest of the Cheju Island). In this study, we give the cyclonic and anticyclonic eddy sedimentation patterns.

The Marine Environment and Dinoflagellates Cysts in the Southwestern Sea of Korea (한국남서해역의 해양환경과 와편모조류 시스트 분포 특성)

  • Park, Jong-Sick;Yoon, Yang-Ho;Noh, Il-Hyeon;Soh, Ho-Young;Shin, Hyeon-Ho
    • ALGAE
    • /
    • v.23 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • A field survey for dinoflagellate cysts was carried out from May 2000 to November 2002 for the Southwest Sea of Korea. A total dinoflagellate cysts identified were 33 species, which belonged to 17 genera, 31 species, and 2 unidentified species. A cysts density were 16-1,501 cysts-gdry$^{-1}$. The dominant species of dinoflagellate cysts in the Southwestern Sea of Korea were Spiniferites bulloideus and Scrippsiella trochoidea, which are autotrophic species. To investigate the environmental characteristics of the Southwestern Sea of Korea using the dinoflagellate cysts, a principal component analysis (PCA) was conducted using the data collected from a total of 51 stations. From the score distribution map by the PCA, the Southwestern Sea of Korea was largely divided into three regions according to the first primary component and the second primary component. In other words, Group 1 was the western sea area of Mokpo and Jindo, Group 2 was the outer sea area of the South Sea, and Group 3 was the coastal areas of the South Sea around the Archipelago. It was found that this division of sea area was influenced by effects of the sea environment of the coastal areas of Korea. The coastal areas of Mokpo and Jindo that belong to Group 1 were affected by the cold Yellow Sea water. The outer sea area of the central parts of the South Sea that belong to Group 2, which is the boundary between the Southern coastal water of Korea and the Tsushima warm water, was subject to the formation of temperature fronts throughout the year, while Group 3 was affected by the coastal waters of Korea. It was also found that this division was in close relationship with the distribution of sediment facies in the bottom layer. From the above results, the environmental factors that influence the cyst distribution in he Southwestern Sea of Korea were found to include the eutrophication status of the sea area, the physical characteristics of the sea environment such as the flow of sea current and fronts, the sediment facies in the bottom layer, and the appearance volume of motile cells.

Vegetation Diversity and Management Strategy of Mountain Wetlands in Cheonchuksan(Mt.) in Uljin (천축산 일대 산지습지의 식생다양성과 관리방안)

  • Lim, Jeong-cheol;Ahn, Kyung-hwan;Jo, Gwang-jin;Chu, Yeoun-soo;Yoon, Jung-do;Lee, Chang-su;Choi, Byoung-ki
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.264-274
    • /
    • 2020
  • This study aims to clarify the diversity and distribution characteristics of plant communities in four small mountain wetlands located in the high altitude area of Cheonchuk Mountain within the Wangpicheon Basin Ecological Landscape Conservation Area in Seomyeon, Uljin-gun, Gyeongsangbuk-do. A total of 26 vegetation data were collected according to the Z.-M. school's phytosociological vegetation survey method considering the homogeneity of habitat type and species composition. Four physiognomic vegetation types composed of 9 syntaxa was confirmed through vegetation classification according to dominant correlation and vegetation type classification considering species composition. The Iris ensata var. spontanea-Molinia arundinacea community is a dominant plant community representing the research area. After human use, vegetation is developing through natural transition in a homogeneous location left unattended, but the distribution of other plant communities was rarely observed due to the narrow wetland area. The microtopography and hydrological environment of each wetland were identified as key factors affecting the diversity and distribution of vegetation.

Analysis of The Human Thermal Environment in Jeju's Public Parking Lots in Summer and Suggestion for Its Modification (제주시 공영 주차장 내 여름철 인간 열환경 분석 및 저감 방안 제안)

  • Choi, Yuri;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.18-32
    • /
    • 2024
  • This study aims to analyze the summer human thermal environment in Jeju City's outdoor parking lots by measuring microclimate data and comparing pavement and vegetation albedoes and elements through computer simulations. In measured cases, results due to albedo showed no significance, but there was a significant difference between sunny and shaded areas by trees. The sunny area had a PET (physiological equivalent temperature) in the 'very hot' level, while the shaded area exhibited a 2-step lower 'warm' level. UTCI (universal thermal climate index) also showed that the sunny area was in the 'very strong heat stress' level, whereas the shaded area was 1-step lower in the 'strong heat stress' level, confirming the role of trees in reducing incoming solar radiant energy. Simulation results, using the measured albedoes, closely resembled the measured results. Regarding vegetation, scenarios with a wide canopy, high leaf density, and narrow planting spacing were effective in mitigating the human thermal environment, and the differences due to tree height varied across scenarios. The scenario with the lowest PET value was H9W9L3D8 (tree height 9m, canopy width 9m, leaf area index 3.0, planting spacing 8m), indicating a 0.7-step decrease compared to the current landscaping scenario. Thus, it was confirmed that, among landscaping elements, trees have a significant impact on the summer human thermal environment compared to ground pavement.

Spatial Distribution and Community Structure of Heterotrophic Protists in the Central Barents Sea of Arctic Ocean During Summer (북극해 하계 중앙 바렌츠해에서 종속영양 원생동물의 군집구조와 공간적 분포)

  • Yang, Eun-Jin;Choi, Joong-Ki;Kim, Sun-Young;Chung, Kyung-Ho;Shin, Hyoung-Chul;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.567-579
    • /
    • 2004
  • To investigate the spatial distribution and community structure of heterotrophic protists, we collected water samples at 23 stations of central Barents Sea in August, 2003. This study area was divided into three area with physico-chemical and chi-a distribution characteristics: Area I of warm Atlantic water mass, Area III of cold Arctic water mass and Area II of mixed water mass. Chl-a concentration ranged from 0.18 to $1.04{\mu}g\;l^{-1}$ and was highest in Area I. The nano-sized chi-a accounted fur more than 80% of the total chi-a biomass in this study area. The contribution of nano-sized chi-a to total chi-a was higher in Area I than in Area II. Communities of heterotrophic protists were classified into three groups such as heterotrophic nanoflagellates (HNF), ciliates and heterotrophic dinoflagellates (HDF). During the study periods, carbon biomass of heterotrophic protists range from 11.3 to $38.7{\mu}gC\;l^{-1}$ (average $21.0{\mu}gC\;l^{-1}$), and were highest in Area I and were lowest in Area III. The biomass of ciliates ranged from 4.2 to $19.3{\mu}gC\;l^{-1}$ and contributed 31.5-66.9% (average 48.1%) to the biomass of heterotrophic protists. Ciliates to heterotrophic protists biomass accounted fur more than 50% in Area I. Heterotrophic dinoflagellates biomass ranged from 5.7 to $18.4{\mu}gC\;l^{-1}$ and contributed 27.1 to 56.3% (average 42.8%) of heterotrophic protists. Heterotrophic dinoflakellates to heterotrophic protists biomass accounted fur about 50% in Area III. Heterotrophic nanoflageltate biomass ranged from 0.5 to $3.4{\mu}gC\;l^{-1}$ and contributed 3.2 to 19.6% (average 9.2%) of heterotrophic protists. Heterotrophic nanoflagellates to heterotrophic protists biomass accounted fur more than 10% in Area III. These results indicate that the relative importance and structure of heterotrophic protists may vary according to water mass. Heterotrophic protists and phytoplankton biomass showed strong positive correlation in the study area The results suggest that heterotrophic protists are important consumers of phytoplankton, and protists might play a pivotal role in organic carbon cycling In the pelagic ecosystem of this study area during the study period.

Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar (FMCW Radar를 이용한 선박 탐지 및 추적 기법 구현)

  • Hong, Dan-Bee;Yang, Chan-Su
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study focuses on a ship detection and tracking method using Frequency Modulated Continuous Wave (FMCW) radar used for horizontal surveillance. In general, FMCW radar can play an important role in maritime surveillance, because it has many advantages such as low warm-up time, low power consumption, and its all weather performance. In this paper, we introduce an effective method for data and signal processing of ship's detecting and tracking using the X-band radar. Ships information was extracted using an image-based processing method such as the land masking and morphological filtering with a threshold for a cycle data merged from raw data (spoke data). After that, ships was tracked using search-window that is ship's expected rectangle area in the next frame considering expected maximum speed (19 kts) and interval time (5 sec). By using this method, the tracking results for most of the moving object tracking was successful and those results were compared with AIS (Automatic Identification System) for ships position. Therefore, it can be said that the practical application of this detection and tracking method using FMCW radar improve the maritime safety as well as expand the surveillance coverage cost-effectively. Algorithm improvements are required for an enhancement of small ship detection and tracking technique in the future.