DOI QR코드

DOI QR Code

Spatial Distribution and Community Structure of Heterotrophic Protists in the Central Barents Sea of Arctic Ocean During Summer

북극해 하계 중앙 바렌츠해에서 종속영양 원생동물의 군집구조와 공간적 분포

  • 양은진 (인하대학교 이과대학 해양학과) ;
  • 최중기 (인하대학교 이과대학 해양학과) ;
  • 김선영 (인하대학교 이과대학 해양학과) ;
  • 정경호 (한국해양연구원 부설 극지연구소) ;
  • 신형철 (한국해양연구원 부설 극지연구소) ;
  • 김예동 (한국해양연구원 부설 극지연구소)
  • Published : 2004.12.31

Abstract

To investigate the spatial distribution and community structure of heterotrophic protists, we collected water samples at 23 stations of central Barents Sea in August, 2003. This study area was divided into three area with physico-chemical and chi-a distribution characteristics: Area I of warm Atlantic water mass, Area III of cold Arctic water mass and Area II of mixed water mass. Chl-a concentration ranged from 0.18 to $1.04{\mu}g\;l^{-1}$ and was highest in Area I. The nano-sized chi-a accounted fur more than 80% of the total chi-a biomass in this study area. The contribution of nano-sized chi-a to total chi-a was higher in Area I than in Area II. Communities of heterotrophic protists were classified into three groups such as heterotrophic nanoflagellates (HNF), ciliates and heterotrophic dinoflagellates (HDF). During the study periods, carbon biomass of heterotrophic protists range from 11.3 to $38.7{\mu}gC\;l^{-1}$ (average $21.0{\mu}gC\;l^{-1}$), and were highest in Area I and were lowest in Area III. The biomass of ciliates ranged from 4.2 to $19.3{\mu}gC\;l^{-1}$ and contributed 31.5-66.9% (average 48.1%) to the biomass of heterotrophic protists. Ciliates to heterotrophic protists biomass accounted fur more than 50% in Area I. Heterotrophic dinoflagellates biomass ranged from 5.7 to $18.4{\mu}gC\;l^{-1}$ and contributed 27.1 to 56.3% (average 42.8%) of heterotrophic protists. Heterotrophic dinoflakellates to heterotrophic protists biomass accounted fur about 50% in Area III. Heterotrophic nanoflageltate biomass ranged from 0.5 to $3.4{\mu}gC\;l^{-1}$ and contributed 3.2 to 19.6% (average 9.2%) of heterotrophic protists. Heterotrophic nanoflagellates to heterotrophic protists biomass accounted fur more than 10% in Area III. These results indicate that the relative importance and structure of heterotrophic protists may vary according to water mass. Heterotrophic protists and phytoplankton biomass showed strong positive correlation in the study area The results suggest that heterotrophic protists are important consumers of phytoplankton, and protists might play a pivotal role in organic carbon cycling In the pelagic ecosystem of this study area during the study period.

2003년 8월동안 중앙 바렌츠해의 23개 정점에서 표층생태계를 대상으로 하여 원생동물 플랑크톤의 공간적 분포와 군집구조에 대하여 조사하였다. 조사수역은 물리-화학, 엽록소-a 농도의 분포특성에 의해 고온 고염의 대서양 수괴의 영향을 받는 수역(수역 I), 저온 저염의 북극수괴의 영향을 받는 수역(수역 III), 두 수괴가 혼합되어 분포하는 수역(수역 II)으로 구분하였다. 조사수역의 엽록소-a 농도는 수역 I에서 비교적 높게 나타났으며, 수역 III에서 낮은 분포를 보였다. 조사기간 동안 원생동물 플랑크톤은 $10{\mu}m$ 이하의 종속영양 미소 편모류, 무각 섬모충류와 유종 섬모충류를 포함하는 섬모충류, 무각 와편모류와 유각와편모류로 구성되어 있는 종속영양 와편모류로 구분하였다. 원생동물 생물량은 $11.3{\sim}38.7{\mu}gC\;l^{-1}$로 평균 $21.0{\mu}gC\;l^{-1}$로 나타났으며, 원생동물의 군집은 수역에 따라 다른 특성을 보였다. 고온 고염의 수역 I에서는 섬모충류에 의해 50% 이상의 높은 우점율을 보였으며, 저온 저염의 수역 III에서는 종속영양 와편모류에 의해 평균 50%의 우점율을 보였다. 종속영양 미소 편모류는 원생동물 군집에서 적은 그룹으로 나타났으나, 수역 III에서는 10% 이상의 기여율을 보여 다른 수역에 비해 비교적 높은 기여율을 보였다. 섬모충류의 생물량중 무각 섬모충류는 유종 섬모충류에 비해 3배 이상 높은 생물량을 보였으며, 주로 strombidium spp.와 Strobilidium spp.에 의해 높은 생물량이 유지되었다. 종속영양 와편모류중 무각 와편모류는 유각 와편모류에 비해 10배 정도의 높은 생물량이 나타났다. 따라서 조사기간 동안 섬모충류와 종속영양 와편모류는 원생동물의 중요한 부분을 차지하는 것으로 나타났다. 또한 종속영양 원생동물의 생물량과 엽록소-a 농도 사이에 상관관계 분석 결과 이 두 그룹의 생물량 사이에는 높은 상관관계를 보였다(R=0.82, p<0.0005). 이것은 종속영양 원생동물과 식물플랑크톤 사이에 잠재적 피식-포식자의 관계가 있음을 암시하며, 특히 종속영양 와편모류와 소형식물플랑크톤 사이의 밀접한 관계는 북극해 해양 생태계의 미세생물 먹이망에서 종속영양 원생동물이 일차생산의 중요한 조절 요인이 될 수 있음을 시사하였다.

Keywords

References

  1. Andersen, P. 1988. The quantitative importance of the "Microbial loop" in the marine pelagic: a case study from the North Bering/Chukchi seas. Archiv fur Hydrobiologie Beihefte, 31, 243-251.
  2. Arashkevich, E., P. Wassmann, A. Pasternak, and C. Wexels Riser. 2002. Seasonal and spatial variation in biomass, structure and development progress of the zooplankton community in the Barents Sea. J. Mar. Sys., 38, 125-145. https://doi.org/10.1016/S0924-7963(02)00173-2
  3. Archer, S.D., P.G. Verity, and J. Stefels. 2000. Impact of micro zooplankton on the progression and fate of the spring bloom in fjords of northern Norway. Aquat. Microb. Ecol., 22, 27-41. https://doi.org/10.3354/ame022027
  4. Azam, F., T. Fenchel, J.G. Field, F.S. Gray, and L.A. Meyer-Reil. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257-263. https://doi.org/10.3354/meps010257
  5. Burkill, P.H., E.S. Dewrds, and M.A. Sleigh. 1995. Micro-zooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep-Sea Res. II, 42, 1277-1290. https://doi.org/10.1016/0967-0645(95)00060-4
  6. Bursa, A.S. 1961. The annual oceanographic cycle at Igloolik in the Canadian Arctic II. The phytoplankton. J. Fish. Res. Board Canada, 18, 563-615. https://doi.org/10.1139/f61-046
  7. Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorus Monas sp. enriched from sea waters. Mar. Ecol. Prog. Ser., 36, 171-175. https://doi.org/10.3354/meps036171
  8. Edler, L. 1979. Phytoplankton and chlorophyll recommendations for biological studies in the Baltic Sea. p. 13-25. In: Baltic Marine Biologists. ed. by L. Edler.
  9. Engelsen, O., E. Nost Hegseth, H. Hop, E. Hansen, and S. Falk-Petersen. 2002. Spatial variability of chlorophyll-a in the marginal ice zone of the Barents Sea, with relations to sea ice and oceanographic conditions. J. Mar. Sys., 38, 79-97.
  10. Garrison, D.L., M.M. Gowing, and M.P. Hughes. 1998. Nano-and microzooplankton in the northern Arabian sea during the southwest Monsoon, august-september 1995 A US-JGOFS study. Deep-Sea Res. I, 45, 2269-2299. https://doi.org/10.1016/S0967-0645(98)00071-X
  11. Hansen, B., S. Christiansen, and G. Pedersen. 1996. Plank-tonic dynamics in the marginal ice zone of the central Barents Sea during spring : carbon flow and structures of the grazer food chain. Pol. Biol., 16, 115-128. https://doi.org/10.1007/BF02390432
  12. Jensen, F. and B.W. Hansen. 2000. Ciliates and heterotrophic dinoflagellates in the marginal ice zone of the central Barents Sea during spring. J. Mar. Biol. Ass. U.K., 80, 45-54. https://doi.org/10.1017/S0025315499001551
  13. Levinsen, H., T.G. Nielsen, and B.W. Hansen. 1999. Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol., 16, 217-232. https://doi.org/10.3354/ame016217
  14. Loeng, H. 1989. The influence of temperature on some fish population parameters in the Barents Sea. J. Northwest Atlantic Fish Sci., 9, 103-113. https://doi.org/10.2960/J.v9.a9
  15. Loeng, H. 1991. Features of the physical oceanographic conditions of the Barents Sea. Pol. Res., 10, 5-18. https://doi.org/10.1111/j.1751-8369.1991.tb00630.x
  16. Loeng, H., V. Ozhigin, and B. Adlandsvik. 1997. Water fluxes through the Barents sea. ICES J. Mar. Sci., 54, 310-317. https://doi.org/10.1006/jmsc.1996.0165
  17. Marchant, H.J. 1985. Choanoflagellates in the Antarctic marine food chain. p. 271-276. In: Antarctic Nutrient Cycles and Food Webs. eds. by W.R. Siefried, P.R. Cody, and R.M. Laws. Springer, Berlin.
  18. Menden-Deuer, S. and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnol. Oceangr., 45, 569-579. https://doi.org/10.4319/lo.2000.45.3.0569
  19. MOMAF. 2003. '02 Oceanographic research on the Arctic sea, pp 300.
  20. Nielsen, T.G. and B. Hansen. 1995. Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloon. Mar. Ecol. Prog. Ser., 125, 239-257. https://doi.org/10.3354/meps125239
  21. Nielsen, T.G. and T. Kiorboe. 1994. Regulation of zooplankton biomass and production in a temperate, coastal eco-system. 2. ciliates. Limnol. Oceanogr., 39, 508-519. https://doi.org/10.4319/lo.1994.39.3.0508
  22. Niesen, T.G., B. Lokkegaard, K. Richardson, F.B. Pedersen, and L. Hansen. 1993. Structure of plankton communities in the Dogger Bank area (North Sea) during a stratified situation. Mar. Ecol. Prog. Ser., 95, 115-131. https://doi.org/10.3354/meps095115
  23. Paranjape, M.A. 1987. Grazing by microzooplankton in the eastern Canadian Arctic in summer 1983. Mar. Ecol. Prog. Ser., 40, 239-246. https://doi.org/10.3354/meps040239
  24. Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, 177 p.
  25. Pierce, R.W. and J.F. Turner. 1992. Ecology of planktonic ciliates in marine food webs. Rev. Auat. Sci., 6, 139-181.
  26. Putt, M. and D.K. Stoecker. 1989. An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol. Oceanogr., 34, 1097-1103. https://doi.org/10.4319/lo.1989.34.6.1097
  27. Rat'kova T.N. and P. Wassmann. 2002. Seasonal variation and spatial distribution of phyto-and protozooplankton in the central Barents Sea. J. Mar. Sys., 38, 47-75. https://doi.org/10.1016/S0924-7963(02)00169-0
  28. Reigstad, M., P. Wassmann, C. Wexels Riser, S. Oygarden, and F. Rey. 2002. Variations in hydrography, nutrients and chlorophyll $\alpha$ in the marginal ice-zone and the central Barents Sea. J. Mar. Sys., 38, 9-29. https://doi.org/10.1016/S0924-7963(02)00167-7
  29. Rey, F., H.R. Skjolda, and D. Slagstad. 1987. Primary production in relation to climatic changes in the Barents Sea. p. 29-46. In: The effect of oceanographic conditions on distribution and population dynamics of commercial fish stocks in the Barensts Sea. ed. by H. Loeng. Bergen.
  30. Sakshaug, E. 1997. Biomass and productivity distributions and their variability in the Barents Sea. ICES J. Mar. Sci., 54, 341-350. https://doi.org/10.1006/jmsc.1996.0170
  31. Sakshaug, E., A. Bjorge, B. Guliksen, H. Loeng, and F. Mehlum. 1994. Structure, biomass distribution and energetics of the pelagic ecosystem in the Barents Sea: a synopsis. Pol. Biol., 14, 405-411.
  32. Sakshaug, E., F. Rey, and D. Slagstad. 1995. Wind forcing of marine primary production in the northern atmospheric low-pressure belt. p. 15-25. In: Ecology of Fjords and Coastal waters. ed. by H.R. Skjoldal. Elseviser, Amsterdam.
  33. Sheldon, R.W., P. Nival, and F. Rassoulzadegan. 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr., 31, 184-189. https://doi.org/10.4319/lo.1986.31.1.0184
  34. Sherr, E.B., B.F. Sherr, and G.A. Paffenhofer. 1986. Phagotrophic protozoa as food for metazoans: a "missing" trophic link in marine pelagic food webs? Mar. Microb. Food Webs, 1, 61-80.
  35. Sherr, E.B., B.F. Sherr, and L. Fessenden. 1997. Heterotrophic protists in the Centric Arctic Ocean. Deep Sea Res. II, 44, 1665-1682. https://doi.org/10.1016/S0967-0645(97)00050-7
  36. Sieburth, J. McN., V. Smetacek, and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic components of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr., 23, 1256-1263. https://doi.org/10.4319/lo.1978.23.6.1256
  37. Smetacek, V. 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol., 63, 1-11. https://doi.org/10.1007/BF00394657
  38. Verity, P.G. and C. Langdon. 1984. Relationships between lorica volume, carbon, nitrogen and ATP content of tintinnids in Narragansett Bay. J. Plank. Res., 6, 859-868. https://doi.org/10.1093/plankt/6.5.859
  39. Verity, P.G. and M. Vernet. 1992. Microzooplankton grazing, pigments and composition of plankton communities during the late spring in two Norwegian fjords. Sarsia, 77, 263-274. https://doi.org/10.1080/00364827.1992.10413511
  40. Verity, P.G., P. Wassmann, M.E. Frischer, M.H. Howard-Jones, and A.E. Allen. 2002. Grazing of phytoplankton by microzooplankton in the Barents Sea during early summer. J. Mar. Sys., 38, 109-123. https://doi.org/10.1016/S0924-7963(02)00172-0
  41. Verity, P.G., P. Wassmann, T.N. Ratkova, I.J. Andreassen, and E. Nordby. 1999. Seasonal patterns in compostion and biomass of autotrophic and heterotrophic nano-and microplankton communities on the North Norwegian shelf. Sarsia, 84, 265-277.
  42. Wassmann, P. 2001. Vernal export and retention of biogenic matter in the northeastern North Atlantic and adjacent Arctic Ocean: the role of the Norwegian Atlantic Current and topography. Mem. Nat. Inst. Pol. Res., Spec. Issue, 54, 377-392.
  43. Wassmann, P., T. Rat'kova, I. Andreassen, M. Vernet, G. Pedersen, and F. Rey. 1996. Spring bloom development in the marginal ice zone and the central Barents Sea. P.S.Z.I.: Mar. Ecol., 20, 321-346.

Cited by

  1. Tintinnid ciliates of the marine microzooplankton in Arctic Seas: a compilation and analysis of species records vol.40, pp.6, 2017, https://doi.org/10.1007/s00300-016-2049-0