• Title/Summary/Keyword: Warm Current

Search Result 481, Processing Time 0.026 seconds

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -III. Chemical Characteristics of Water Masses in the Polar Front Area of the Central Korean East Sea- (한반도 근해의 해류와 해수특성 -III. 한국 동해 중부 극전선역에 출현하는 수괴의 화학적 특성-)

  • YANG Han-Soeb;KIM Seong-Soo;KANG Chang-Geun;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 1991
  • The vertical distribution and chemical characteristics of water masses were measured along two south-north transects in the polar front region of the central Korean East Sea. In February, a thermocline was present at depth between 50m and loom at the southern sites of a landward A-transect, and its depth was gradually deepened northward. At an outside B-transect, a thermocline was observed at significantly deep depth of 300m to 400m at two northern stations(Stn. 10 and 11), though the depth of the southward stations was nearly identical to that at the northward stations on a A-transect. In September, there were vertically more various water masses, i.e. the Tsushima Warm surface water(TWSW) or more than $20^{\circ}C$, the Tsushima Middle water(TMW) with a range of $12{\~}17^{\circ}C$, the North Korea Cold Water(NKCW) with $1{\~}7^{\circ}C$ temperature, the Japan Sea Proper Water(JSPW) of less than $1^{\circ}C$, and the mixed water. The North Korea Cold Water could be distinguishable from the other waters, especially from the mixed water of the Tsushima Middle Water and the Japan Sea Proper Water by the pattern of $T-O_2$ diagram. For instance, the North Korea Cold Water had higher oxygen by $1{\~}2ml/l$ than those in the mixed water, although both the two water masses ranged $1{\~}7^{\circ}C$ in water temperature. AOU value was the highest in the JSPW and the lowest in the TWSW. Also, AOU indicated a nearly linear and negative correlation with water temperature. However, AOU data for two masses, the NKCW and the TMW, in September departed remarkably from a regression line. Moreover, the ratio of $$\Delta P/\Delta AOU)$ in September was about $0.45{\mu}g-at/ml$ and higher than the value observed in the open sea. This high value could be elucidated by two factors; intrusion of the NKCW with high oxygen and molecular diffusion of dissolved oxygen from the surface into the lower layer. AOU would be a useful tracer for water masses in the polar front area of the Korean East Sea.

  • PDF

The Influences of Additional Nutrients on Phytoplankton Growth and Horizontal Phytoplankton Community Distribution during the Autumn Season in Gwangyang Bay, Korea (가을철 광양만 식물플랑크톤의 수평 분포와 추가 영양염 공급이 식물플랑크톤 성장에 미치는 영향)

  • Bae, Si Woo;Kim, Dongseon;Kim, Young Ok;Moon, Chang Ho;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • In order to estimate the effect of additional nutrients on phytoplankton growth and horizontal phytoplankton community distribution during the autumn season in 2010 and 2011, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Also, nutrient additional experiments were conducted to assess additional nutrient effects on phytoplankton assemblage using the surface water. In both years, the total nutrients were high at the enclosed inner bay and the mouth of Seomjin River, whereas it was low at the St.15~20 where in influenced by the surface warm water current from offshore of the bay. On the other hand, nano- and pico-sized Chl. a were gradually increased towards the outer bay and their trends were significant in 2011 than in 2010. The cryptophyta species occupied more than 85% of total phytoplankton assembleges in 2010, whereas their abundance in 2011 remainds to be 1/10 levels of 2010. Following the cryptophata species, the diatom Chaetoceros spp. and Skeletonema-like spp. were found to be dominant species. Further the biosaasy experimental results shows that the phytoplankton biomass in the +N and +NP treatments was higher compared to control and +P treatments and its trend was significant at St.8 and St.20 where nutrient concentration were low. Based on the bioassay and field survey, providing the high nutrients may have stimulated to phytoplankton growth such as S. costatum-like spp.. In particular, opportunistic micro-algae such as Cryptomonas spp. were able to achieve the high biomass under the relatively mid nutrient condition from bottom after break down of seasonal stratification in the Gwangyang Bay.

Wind-and Rain-induced Variations of Water Column Structures and Dispersal Pattern of Suspended Particulate Matter (SPM) in Marian Cove, the South Shetland Islands, West Antarctica during the Austral Summer 2000 (서남극 남 쉐틀랜드 군도 마리안 소만에서 바람 및 강수에 의한 여름철 수층 구조의 변화와 부유물질 분산)

  • 유규철;윤호일;오재경;강천윤;김예동;배성호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Time-series CTDT (Conductivity/Temperature/Depth/Transmissivity) were obtained at one point near tidewater glacier of Marian Cove (King George Islands, Antarctica) to present water column properties and SPM (suspended particulate matter) dispersal pattern in relation with tide, current, meteorological data, and SPM concentration. Four layers were divided from the water column characteristics measured in the interval of an hour for about 2 days: 1) cold, fresh, and turbid surface mixed layer between 0-20 m in water depth, 2) warm, saline, and relatively clean Maxwell Bay inflow between 20-40 m in water depth, 3) turbid/cold tongue of subglacial discharges compared with the ambient waters between 40-70 m in water depth, and 4) cold, saline, and clean bottom water beneath 70 m in water depth. Surface plume, turbid freshwater at coastal/cliff area in late summer (early February), had the characteristic temperature and SPM concentration according to morphology, glacial condition, and composition of sediments. The restrict dispersion only over the input source of meltwater discharges was due to calm wether condition. Due to strong wind-induced surface turbulence, fresh and turbid surface plume, englacial upwelling cold water, glacier-contact meltwater, and Maxwell Bay inflow was mixing at ice-proximal zone and the consequent mixed layer deepened at the surface. Large amount of precipitation, the major controlling factor for increasing short-term glacial discharges, was accompanied by the apparent development of subglacial discharge that resulted in the rapid drop of salinity below the mid depth. Although amount of subglacial discharge and englacial upwelling may be large, however, their low SPM concentration would have small influence on bottom deposition of terrigenous sediments.

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Distribution characteristics of chemical oxygen demand and Escherichia coli based on pollutant sources at Gwangyang Bay of South Sea in Korea (남해 광양만에서 오염원에 따른 화학적 산소요구량과 대장균의 해역별 분포특성)

  • Baek, SeungHo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3279-3285
    • /
    • 2014
  • This study aimed to understand seasonal and geographical characteristic of chlorophyll-${\alpha}$ (chl-${\alpha}$), COD (chemical oxygen demand) and Escherichia coli at Gwangyang Bay during the period from February 2010 to November 2012. The bay is divided into three different zones based on the pollutant levels and geographical characteristics. During the study periods, water temperature, salinity, Chl. ${\alpha}$, and chemical oxygen demand (COD) varied in the range of $4.68-28.63^{\circ}C$, 1.94-33.84 psu, 0.31-35.10 ${\mu}gL^{-1}$, and 0.70-13.35 $mgL^{-1}$, respectively. Total chl-a concentration were high at the zone I, which can be characterized as a semi-enclosed eutrophic area, and it were low at the zone III, which is influenced by low nutrients of surface warm water current from offshore of the bay. The high concentration of COD was observed at inner bay during the four seasons and the water quality level was kept to be bad condition during spring season at the zone II, which is influenced by Seomjin River water. The highest colony form of E. coli was recorded to be 3550 $cfuL^{-1}$ during summer at station 1 (zone I), whereas it was relatively kept low level during all seasons at the zone III. As a result, the E. coli was correlated with water temperature (r=0.31 p<0.05) and salinity (r=-0.55 p<0.05), implying that those parameters have play an important crucial role in proliferation of E. coli. Consequently, our results indicated that the E. coli can be significantly promoted within pollutant sources including the high nutrients supplied by rive discharge during spring and summer rainy seasons in semi-enclosed area of Gwangyang Bay.

Clay Mineralogical Characteristics and Origin of Sediments Deposited during the Pleistocene in the Ross Sea, Antarctica (남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구)

  • Jung, Jaewoo;Park, Youngkyu;Lee, Kee-Hwan;Hong, Jongyong;Lee, Jaeil;Yoo, Kyu-Cheul;Lee, Minkyung;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.163-172
    • /
    • 2019
  • A long core (RS15-LC48) was collected at a site in the continental rise between the Southern Ocean and the Ross Sea (Antarctica) during the 2015 Ross Sea Expedition. The mineralogical characteristics and the origin of clay minerals in marine sediments deposited during the Quaternary in the Ross Sea were determined by analyzing sedimentary facies, variations in grain size, sand fraction, mineralogy, clay mineral composition, illite crystallinity, and illite chemical index. Core sediments consisted mostly of sandy clay, silty clay, or ice rafted debris (IRD) and were divided into four sedimentary facies (units 1-4). The variations in grain size distribution and sand content with depth were very similar to the variations in magnetic susceptibility. Various minerals such as smectite, chlorite, illite, kaolinite, quartz, and plagioclase were detected throughout the core. The average clay mineral composition was dominated by illite (52.7 %) and smectite (27.7 %), with less abundant clay minerals of chlorite (11.0 %) and kaolinite (8.6 %). The IC and illite chemical index showed strong correlation trends with depth. The increase in illite and chlorite content during the glacial period, together with the IC and chemical index values, suggest that sediments were transported from the bedrocks of the Transantarctic Mountains. During the interglacial period, smectite may have been supplied by the surface current from Victoria Land, in the western Ross Sea. High values for IC and the illite chemical index also indicate relatively warm climate conditions during that period.

A Study on the Current Status of Ecological Restoration Plant Species Use - Focusing on the Ecosystem Conservation Cooperation Fund Return Projects - (생태복원 식물종 사용 실태에 관한 연구 - 생태계보전협력금 반환사업을 중심으로 -)

  • Cho, Dong-gil
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.525-547
    • /
    • 2021
  • The main purpose of this study is to examine the use of plant species in ecological restoration projects. To this end, planting drawings from 58 sites that had completed the return of the ecosystem conservation cooperation fund for the past six years were collected and analyzed. The analysis used the construction completion and design drawings to determine the overall selection status and analyze frequency by classifying planted plants into wild and cultivated plants by nature, size, vegetation climate, and upland and wetland habitat. The investigation and analysis process found many cases of wrong plant names, so an analysis was also performed on the matter. In the 58 investigation sites, 282 plants were used for planting: 91 tree species, 69 shrub species, 11 vine species, and 111 herbal species. The most commonly used plant species was Spiraea prunifolia f. simpliciflora, followed by Sorbus alnifolia, Quercus acutissima, Zoysia japonica, Callicarpa dichotoma, and Weigela subsessilisin that order. The most commonly used tree species was Sorbus alnifolia,followed by Quercus acutissima, Zelkova serrata, Chionanthus retusus, and Cornus officinalis, in that order. The most commonly used shrub species was Spiraea prunifolia f. simpliciflora, followed by Weigela subsessilis, Callicarpa dichotoma, Rhododendron yedoense f. poukhanense. and Euonymus alatusin that order. The most commonly used herbal plant species was Zoysia japonica, followed by Dendranthema zawadskii var. latilobum, Aster koraiensis, Miscanthus sacchariflorus, and Pennisetum alopecuroidesin that order. In the analysis by vegetation climate, Spiraea prunifolia f. simpliciflora, Callicarpa dichotoma, and Sorbus alnifoliawere most used in that order in both the temperate central and the warm temperate forest zones, but the pattern does not properly reflect the climate characteristics. In the analysis by habitat, Miscanthus sacchariflorus and Lythrum salicariawere most used in the wetland. In particular, the ratio of wild plants to cultivated plants was 76% to 24%, indicating the ratio of selecting cultivated plants was high. The names of plants on the drawings were mostly common names that did not appear in the Korea National Arboretum or the National Species List of Korea. It is necessary to use proper plant names in the future. Regarding the use of planting plants for ecological restoration, it is necessary to adopt the approach of diversifying selected plants, selecting plants according to characteristics of climate zones, and lowering the specifications of plants used for ecological restoration. Moreover, it is important to fully understand the ecological characteristics of wetland plants and minimize the ratio of using cultivated plants to ensure the plant selection centered on wild plants.

First Observational Finding of Submesoscale Intrathermocline Eddy in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 아중규모 중층성 소용돌이 발견)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.332-350
    • /
    • 2019
  • Zonal hydrographic section measurements at $39.7^{\circ}N$ were conducted between $129.0^{\circ}E$ and $131.3^{\circ}E$ from August 7 to 25 in 2017 using an underwater glider. The glider traveled about 440 km for about 18 days along the 106 line of the regular shipboard measurements in the National Institute of Fishery Science (NIFS) and obtained twice a hydrographic section with high horizontal resolution. Even under the strong East Korea Warm Current with maximum speed of 0.8 m/s across the section, the glider successfully maintained the designated path within an RMS distance of 400 m. By comparing with the NIFS shipboard hydrographic section, it is confirmed that high spatial resolution measurements obtained from a glider were necessary to properly observe front and eddy variability in the East Sea where a typical spatial scale is smaller than the open oceans. From the glider section measurements, a new lens-shaped eddy was found in the thermocline. The lens-shaped anticyclonic eddy had 10~13 km in horizonal width and about 200 m in height like a typical submesoscale eddy resided within the thermocline, which was firstly named as Korea intrathermocline eddy (Keddy). The Keddy has the distinguishing characteristics of a typical intrathermocline eddy, such as a central core with anomalously weak stratification, a convex shaped lens bounded by the stratification anomaly, an interior maximum of velocity at 170 m, no surface appearance of the geopotential field, a small or comparable horizontal width relative to the first baroclinic Rossby radius of deformation, and the Rossby nubmer of 0.7.

Sea Water Type Classification Around the Ieodo Ocean Research Station Based On Satellite Optical Spectrum (인공위성 광학 스펙트럼 기반 이어도 해양과학기지 주변 해수의 수형 분류)

  • Lee, Ji-Hyun;Park, Kyung-Ae;Park, Jae-Jin;Lee, Ki-Tack;Byun, Do-Seung;Jeong, Kwang-Yeong;Oh, Hyun-Ju
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.591-603
    • /
    • 2022
  • The color and optical properties of seawater are determined by the interaction between dissolved organic and inorganic substances and plankton contained in it. The Ieodo - Ocean Research Institute (I-ORS), located in the East China Sea, is affected by the low salinity of the Yangtze River in the west and the Tsushima Warm Current in the south. Thus, it is a suitable site for analyzing the fluctuations in circulation and optical properties around the Korean Peninsula. In this study, seawater surrounding the I-ORS was classified according to its optical characteristics using the satellite remote reflectance observed with Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua and National Aeronautics and Space Administration (NASA) bio-Optical Marine Algorithm Dataset (NOMAD) from January 2016 to December 2020. Additionally, the variation characteristics of optical water types (OWTs) from different seasons were presented. A total of 59,532 satellite match-up data (d ≤ 10 km) collected from seawater surrounding the I-ORS were classified into 23 types using the spectral angle mapper. The OWTs appearing in relatively clear waters surrounding the I-ORS were observed to be greater than 50% of the total. The maximum OWTs frequency in summer and winter was opposite according to season. In particular, the OWTs corresponding to optically clear seawater were primarily present in the summer. However, the same OWTs were lower than overall 1% rate in winter. Considering the OWTs fluctuations in the East China Sea, the I-ORS is inferred to be located in the transition zone of seawater. This study contributes in understanding the optical characteristics of seawater and improving the accuracy of satellite ocean color variables.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.