DOI QR코드

DOI QR Code

Sea Water Type Classification Around the Ieodo Ocean Research Station Based On Satellite Optical Spectrum

인공위성 광학 스펙트럼 기반 이어도 해양과학기지 주변 해수의 수형 분류

  • Lee, Ji-Hyun (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education, Seoul National University) ;
  • Park, Jae-Jin (Department of Earth Science Education, Seoul National University) ;
  • Lee, Ki-Tack (Division of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Byun, Do-Seung (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Jeong, Kwang-Yeong (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Oh, Hyun-Ju (Ocean Research Division, Korea Hydrographic and Oceanographic Administration)
  • 이지현 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과) ;
  • 박재진 (서울대학교 지구과학교육과) ;
  • 이기택 (포항공과대학교 환경공학부) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 정광영 (국립해양조사원 해양과학조사연구실) ;
  • 오현주 (국립해양조사원 해양과학조사연구실)
  • Received : 2022.10.13
  • Accepted : 2022.10.31
  • Published : 2022.10.31

Abstract

The color and optical properties of seawater are determined by the interaction between dissolved organic and inorganic substances and plankton contained in it. The Ieodo - Ocean Research Institute (I-ORS), located in the East China Sea, is affected by the low salinity of the Yangtze River in the west and the Tsushima Warm Current in the south. Thus, it is a suitable site for analyzing the fluctuations in circulation and optical properties around the Korean Peninsula. In this study, seawater surrounding the I-ORS was classified according to its optical characteristics using the satellite remote reflectance observed with Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua and National Aeronautics and Space Administration (NASA) bio-Optical Marine Algorithm Dataset (NOMAD) from January 2016 to December 2020. Additionally, the variation characteristics of optical water types (OWTs) from different seasons were presented. A total of 59,532 satellite match-up data (d ≤ 10 km) collected from seawater surrounding the I-ORS were classified into 23 types using the spectral angle mapper. The OWTs appearing in relatively clear waters surrounding the I-ORS were observed to be greater than 50% of the total. The maximum OWTs frequency in summer and winter was opposite according to season. In particular, the OWTs corresponding to optically clear seawater were primarily present in the summer. However, the same OWTs were lower than overall 1% rate in winter. Considering the OWTs fluctuations in the East China Sea, the I-ORS is inferred to be located in the transition zone of seawater. This study contributes in understanding the optical characteristics of seawater and improving the accuracy of satellite ocean color variables.

해수 속의 용존 유기·무기물과 플랑크톤 등의 상호 작용은 해수의 색과 광학적 특성을 결정한다. 동중국해에 위치한 이어도 해양과학기지(I-ORS) 주변의 해역은 서쪽으로 양자강 저염수, 남쪽으로 대마 난류에 영향을 받아 한반도 주변의 해수 순환과 광특성 변동 연구에 적합하다. 본 연구에서는 MODIS/Aqua로 관측한 위성 원격 반사도와 NOMAD 실측 원격 반사도를 이용하여 2016년 1월부터 2020년 12월까지 I-ORS 주변의 해수의 원격반사도를 스펙트럼 특성에 따라 23가지의 유형으로 분류하였으며, 이어도 해양 과학기지 주변 해역(d ≤ 10 km)의 위성 일치점 자료 59,532개를 이용하여 연구 해역 수형의 계절 변동 특성을 제시하였다. 각 관측 지점에서의 원격 반사도 스펙트럼은 분광 각도법을 이용하여 기준 스펙트럼과의 유사도를 비교함으로써 가장 근접한 기준 수형으로 분류 하였으며 분광 유사도가 10° 이내일 때만 유의미하다고 판단하였다. 연구 기간내 I-ORS 주변 해역에서는 상대적으로 맑은 해역에서 잘 나타나는 수형이 50% 이상으로 가장 빈번하게 관측되었다. 계절별 수형의 도수분포에서 여름과 겨울의 분포 양상이 다르게 나타났고, 특히 여름에는 맑은 해수에서 주로 나타나는 7 이하의 수형이 주로 출현한 반면에 겨울에는 전체 4% 미만으로 존재하였다. I-ORS 주변을 비롯한 동중국해의 수형의 공간 분포 특성을 고려할 때 I-ORS는 해수 수형의 전이 대에 위치한 것으로 판단된다. 본 연구는 한반도 연안에서의 수형 변동을 분석함으로써 해수의 광학 특성 이해을 이해하고 인공위성 해색 변수의 정확도 향상을 위한 토대 마련에 기여할 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 해양수산부 국립해양조사원 연구사업(이어도 해양과학기지 활용 황·동중국해 중장기 해양환경 변화 연구)의 일부 지원을 받아 수행되었습니다. 이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단 해양-육상-대기 탄소순환시스템연구사업의 지원을 받아(NRF-2021M3I6A1089661)을 받아 수행되었습니다.

References

  1. Bukata, R. P., Jerome, J. H., Kondratyev, A. S., and Pozdnyakov, D. V., 2018, Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton, USA, 384 p.
  2. Choi, D. Y., Woo, H. J., Park, K., Byun, D. S., and Lee, E., 2018, Validation of sea surface wind speeds from satellite altimeters and relation to sea state bias-focus on wind measurements at Ieodo, Marado, Oeyeondo Stations. Journal of the Korean Earth Science Society, 39(2), 139-153. https://doi.org/10.5467/JKESS.2018.39.2.139
  3. Cui, T. W., Zhang, J., Wang, K., Wei, J. W., Mu, B., Ma, Y., and Chen, X. Y., 2020, Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 187-201. https://doi.org/10.1016/j.isprsjprs.2020.02.017
  4. Delcroix, T. and Murtugudde, R., 2002, Sea surface salinity changes in the East China Sea during 1997-2001: Influence of the Yangtze River. Journal of Geophysical Research: Oceans, 107(C12), SRF-9.
  5. Froidefond, J.M., Lavender, S., Laborde, P., Herbland, A. and Lafon. V., 2002, SeaWiFS Data Interpretation in a Coastal Area in the Bay of Biscay. International Journal of Remote Sensing, 23(5), 881-904 https://doi.org/10.1080/01431160110040332
  6. Gohin, F., Druon, J. N., and Lampert. L., 2002, A Five Channel Chlorophyll Concentration Algorithm Applied to SeaWiFS Data Processed by SeaDAS in Coastal Waters. International Journal of Remote Sensing, 23(8), 1639-1661. https://doi.org/10.1080/01431160110071879
  7. Gordon, H. and Morel, A., 1983, Lecture notes on coastal and estuarine studies. In Remote assessment of ocean color for interpretation of satellite visible imagery: A review Vol. 4. Springer-Verlag, NY, USA, 114 p.
  8. Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., and Sohlberg, R. A., 2003, Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interactions, 7(10), 1-15.
  9. Hattab, T., Jamet, C., Sammari, C., and Lahbib, S., 2013, Validation of chlorophyll-α concentration maps from Aqua MODIS over the Gulf of Gabes (Tunisia): Comparison between MedOC3 and OC3M bio-optical algorithms. International Journal of Remote Sensing, 34(20), 7163-7177. https://doi.org/10.1080/01431161.2013.815820
  10. Hojerslev, N. K., 1980, Water color and its relation to primary production. Boundary-Layer Meteorology, 18(2), 203-220. https://doi.org/10.1007/BF00121324
  11. IOCCG, 2000, Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, In Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group No. 3. Dartmouth, NS, Canada, 140 p.
  12. Kim, W., Moon, J. E., Park, Y. -J., and Ishizaka, J., 2016, Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region. Remote Sensing of Environment, 184, 482-495. https://doi.org/10.1016/j.rse.2016.07.031
  13. Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., and Goetz, A. F. H., 1993, The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2-3), 145-163. https://doi.org/10.1016/0034-4257(93)90013-N
  14. Min, J. E., Ryu, J. H., and Park, Y. J., 2015, An analysis of the relationship between inherent optical properties and ocean color algorithms around the Korean waters. Korean Journal of Remote Sensing, 31(5), 473-490. https://doi.org/10.7780/KJRS.2015.31.5.11
  15. Mobley, C. D., Stramski, D., Paul Bissett, W., and Boss, E., 2004, Optical modeling of ocean waters: Is the case 1-case 2 classification still useful?. Oceanography, 17(2), 60-67.
  16. Moon, J. E., Ahn, Y. H., Ryu, J. H., and Shanmugam, P., 2010, Development of ocean environmental algorithms for Geostationary Ocean Color Imager (GOCI). Korean Journal of Remote Sensing, 26(2), 189-207. https://doi.org/10.7780/KJRS.2010.26.2.189
  17. Moore, T. S., Campbell, J. W., and Dowell, M. D., 2009, A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sensing of Environment, 113(11), 2424-2430. https://doi.org/10.1016/j.rse.2009.07.016
  18. Morel, A. and Prieur, L., 1977, Analysis of variations in ocean color 1. Limnology and Oceanography, 22(4), 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
  19. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderateresolution Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi: 10.5067/MODIS/Aqua/L2/OC/2018.
  20. Park, J. J., Oh, S., Park, K. A., Foucher, P. Y., Jang, J. C., Lee, M., and Kang, W. S., 2017, The ship detection using airborne and in-situ measurements based on hyperspectral remote sensing. Journal of the Korean Earth Science Society, 38(7), 535-545. https://doi.org/10.5467/JKESS.2017.38.7.535
  21. Park, J. J., Park, K. A., Kim, H. Y., Lee, E., Byun, D. S., and Jeong, K. Y., 2020, Validation of satellite SMAP sea surface salinity using Ieodo Ocean Research Station data. Journal of the Korean Earth Science Society, 41(5), 469-477. https://doi.org/10.5467/JKESS.2020.41.5.469
  22. Park, K. A., Chae, H. J., and Park, J. E., 2013, Characteristics of satellite chlorophyll-a concentration speckles and a removal method in a composite process in the East/Japan Sea. International journal of remote sensing, 34(13), 4610-4635. https://doi.org/10.1080/01431161.2013.779397
  23. Pradhan, Y., Thomaskutty, A. V., Rajawat, A. S., and Nayak, S., 2005, Improved regional algorithm to retrieve total suspended particulate matter using IRS-P4 ocean colour monitor data. Journal of Optics A: Pure and Applied Optics, 7(7), 343. https://doi.org/10.1088/1464-4258/7/7/012
  24. Roesler, C. S. and Perry, M. J., 1995, In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. Journal of Geophysical Research: Oceans, 100(C7), 13279-13294. https://doi.org/10.1029/95JC00455
  25. Ruddick, K. G., Gons, H. J., Rijkeboer, M., and Tilstone, G., 2001, Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Applied Optics, 40(21), 3575-3585. https://doi.org/10.1364/AO.40.003575
  26. Saldias, G. S., Sobarzo, M., Largier, J., Moffat, C., and Letelier, R., 2012, Seasonal variability of turbid river plumes off central Chile based on high-resolution MODIS imagery. Remote Sensing of Environment, 123, 220-233. https://doi.org/10.1016/j.rse.2012.03.010
  27. Tassan, S., 1994, Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Applied Optics, 33(12), 2369-2378. https://doi.org/10.1364/AO.33.002369
  28. Tedford, E., Halferdahl, G., Pieters, R., and Lawrence, G. A., 2019, Temporal variations in turbidity in an oil sands pit lake. Environmental Fluid Mechanics. 19(2), 457-473. https://doi.org/10.1007/s10652-018-9632-6
  29. Tilstone, G. H., Lotliker, A. A., Miller, P. I., Ashraf, P. M., Kumar, T. S., Suresh, T., Ragavan, B. R., and Menon, H. B., 2013, Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Continental Shelf Research, 65, 14-26. https://doi.org/10.1016/j.csr.2013.06.003
  30. Wei, J., Lee, Z., and Shang, S., 2016, A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments. Journal of Geophysical Research: Oceans, 121(11), 8189-8207.
  31. Woo, H. J., Park, K. A., Byun, D. S., Lee, J., and Lee, E., 2018, Characteristics of the differences between significant wave height at Ieodo Ocean Research Station and satellite altimeter-measured data over a decade (2004~2016). The Sea: Journal of the Korean Society of Oceanography, 23(1), 1-19.
  32. Woo, H. J., Park, K. A., Choi, D. Y., Byun, D. S., Jeong, K. Y., and Lee, E. I., 2019, Comparison of multisatellite sea surface temperatures and in-situ temperatures from Ieodo Ocean Research Station. Journal of the Korean Earth Science Society, 40(6), 613-623. https://doi.org/10.5467/JKESS.2019.40.6.613
  33. Xiong, X., Chiang, K., Sun, J., Barnes, W. L., Guenther, B., and Salomonson, V. V., 2009, NASA EOS Terra and Aqua MODIS on-orbit performance. Advances in Space Research, 43(3), 413-422. https://doi.org/10.1016/j.asr.2008.04.008