• 제목/요약/키워드: Walls

검색결과 4,321건 처리시간 0.03초

근관세척(根管洗滌)에 관(關)한 주사전자현미경적(走査電子顯微鏡的) 연구(硏究) (A SCANNING ELECTRON MICROSCOPIC STUDY OF THE EFFICACY OF ROOT CANAL IRRIGATION)

  • 이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제8권1호
    • /
    • pp.147-153
    • /
    • 1982
  • The purpose of this study is to observe the effect of cleansing action of irrigation solutions which are 3% hydrogen peroxide, 5% sodium hypochlorite and 15% EDTA solution on the root canal wall. After the root canal wall is enlarged with K-file in distilled water, the canal wall which is irrigated with each irrigant for 2 minutes, is compared with the. control group without using any irrigants. Each sample is dehydrated, and coated with 200-250${\AA}$ of gold, and observations are made with the use of scanning electron microscope. The results are as follows: 1. The canal walls irrigated with 3% hydrogen peroxide, 5% sodium hypochlorite and 15% EDTA solution are cleaner than the walls without using irrigants. 2. There are no significant difference of cleansing effect among 3% hydrogen peroxide, 5% sodium hypochlorite and 15% EDTA. 3. After using 3% hydrogen peroxide and 5% sodium hypochlorite solution, large debris are removed on root canal walls, but micro debris remain on the canal walls. 4. The root canal walls irrigated with 15% EDTA solution are decalcifed slightly and show clean surfaces.

  • PDF

A study on the behaviour of coupled shear walls

  • Bhunia, Dipendu;Prakash, Vipul;Pandey, Ashok D.
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.645-675
    • /
    • 2012
  • An effective design technique for symmetrical coupled shear walls is presented. Proposed formulation including assumptions and steps with mathematical formulation has been elaborated to make the design technique. An example has been considered to validate the technique with the DRAIN-3DX (1993) and SAP V 10.0.5 (2000) nonlinear programs. Parametric study has also been considered to find out the limitations along with remedial action of this technique. On the other hand, nonlinear static analysis is considered to determine the response reduction factor of coupled shear walls. Finally, it has been concluded in this paper that the proposed design technique can be considered to design the coupled shear walls under seismic motion.

벽면 조도계수가 염소 접촉조 수리특성에 미치는 영향 연구 (Examining the effects of wall roughness on the hydraulic characteristics of chlorine contactor using Transient CFD Simulation Technique)

  • 채선하;임영택;차민환;김종오
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.759-765
    • /
    • 2011
  • In this study, in order to investigate the effects of wall roughness on the hydraulic characteristics of chlorine contactor, CFD simulation and tracer tests were conducted for both of reactors whose walls are made of concrete and lined with PE(Poly Ethylene). In the case of walls contacted with water being lined with PE (relatively lower roughness), the flow within reactor is closer to plug flow than that in the case of concrete walls (relatively higher roughness). Especially, the longer tail of C-curve from the results of transient CFD simulation can tell that Morill index in the case concrete walls is much higher than that in the case of walls be lined with lower roughness material.

The Erosion of Reinforced Concrete Walls by the Flow of Rainwater

  • Hadja, Kawthar;Kharchi, Fattoum
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.151-159
    • /
    • 2017
  • The action of rainwater on reinforced concrete walls has led to an erosion phenomenon. The erosion is very apparent when the walls are inclined. This phenomenon is studied on a real site characterized by different architectural forms. The site dates back to the seventies; it was designed by the architect, modeler of concrete, Oscar Nie Meyer. On this site, the erosion has damaged the cover of the reinforcements and reduced its depth. In this research work, a method of quantification of the erosion is developed. Using this method, the amount of mass loss by erosion was measured on imprints taken from the site. The results are expressed by the rate of mass loss by erosion; they are associated to the height and the inclination of the walls. Moreover, laboratory analysis was carried out on samples taken from the site. From this study, it is recommended to consider the erosion, in any building code, to determine the cover thickness.

압출성형에 의한 식물세포벽의 수용화 (Solubilization of Plant Cell Walls by Extrusion)

  • 황재관;김종태;홍석인;김철진
    • 한국식품영양과학회지
    • /
    • 제23권2호
    • /
    • pp.358-370
    • /
    • 1994
  • Plant cell walls consist of a variety of chemical constituents such as cellulose, humicelluloses, pertins, lignin, glycoproteins, etc. These components are strongly linked through hydrogen , covalent, ionic and hydrophobic bondings, which thus confers the self-protection capability on plants. Some processing by-products (hulls, brans, pomaces) of cereal, fruits and vegetables are very limited in further utilization due to their compact structural rigidity. In view of the fact that the plant cell walls are essentially composed of dietary fiber components , solubilization of the strong intermolecular linkage s can contribute to increasing the soluble dietary fiber content and thus diversifying the functional and physiological role of plant cell walls as dietary fiber sources. This article reviews the chemical constituents of cereals, fruits & vegetables and brown seaweeds with reference to their intermoleuclar linkages. An particular emphasis will be placed on the solubilizing phenomena of rigid plant cell walls by extrusion and the resulting change of functional properties. It is suggested that underutilized food resources, typically exemplified by various food processing by-products and surplus seaweeds, can be successfully modified toward improved functional performance by extrusion.

  • PDF

Wind tunnel experiments of a building model incorporating viscous-damping walls

  • Pan, Austin D.E.;Yeung, Ngai
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.261-276
    • /
    • 2001
  • This paper presents an experimental study on the effectiveness of viscous-damping walls in controlling the wind-induced vibrations of a building model. A simple four-story building model, square in plan, was constructed for wind tunnel study. In this paper the description of the model, its instrumentation, and the experimental set-up and methodology are reported. The effectiveness of viscous-damping walls in reducing vibrations was investigated for different fluid levels in the walls, and at varying wind speeds and attack angles. The results show that viscous-damping walls are highly effective in most cases.

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.

계단식 보강토 옹벽의 설계 사례 고찰 (Soil-Reinforced Segmental Retaining Walls in Tiered Arrangement - Case Study)

  • 유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.541-548
    • /
    • 2002
  • This paper presents the results of stability analyses on soil-reinforced segmental retaining walls in a tiered arrangement. As-built design sections of four different walls were analyzed within the context of the limit equilibrium-based current design guidelines. The appropriateness of the original designs were then evaluated. Slope stability analyses against the compound failure mode, which Is frequently Ignored during design, were additionally peformed based on the method recommended by FHWA design guideline. The results indicate that the as-built designs of most of the walls examined do not meet the minimum factors of safety for the external and internal stabilities, and for the compound failure mode. The implications of the findings from this study are discussed.

  • PDF

개구부를 위해 인위적 손상을 입은 철근콘크리트 장방형 전단벽의 내진거동 (Seismic Behavior of Artificially Damaged R/C Rectangular Shear Walls with Opening Configurations)

  • 김선우;한병찬;김효진;최기봉;최창식;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.457-460
    • /
    • 2004
  • This study is an experimental study to investigate the shear behavior of reinforced concrete shear walls with openings and to determine the shear strength of those walls. This paper compares rigidities of walls with opening by different opening types. The experimental results, as expected, show that the crack load, yield load, and limited load are inferior for specimen with larger opening area. The magnitude of axial stress and shear stress had a significant effect on the deformability of shear walls with opening.

  • PDF

An Experimental Studies on Heat Transfer and Friction Factor in a Square Channel with Varying Number of Ribbed Walls

  • Oh Se-Kyung;Kim Won-Cheol;Ahn Soo-Whan;Kang Ho-Keun;Kim Myoung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.281-289
    • /
    • 2005
  • An experimental study on the heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with $45^{\circ}$ inclined ribs on one, two, and four walls is reported. Tests were performed for Reynolds number ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e, was kept at 8 and rib height-to-channel hydraulic diameter ratio, $e/D_h$, was kept at 0.0667. The heat transfer coefficient and friction factor values were enhanced with the increase in the number of ribbed walls. Results of this investigation could be used in various applications of internal channel turbulent flows involving different number of roughened walls.