• 제목/요약/키워드: Wall thickness

검색결과 1,553건 처리시간 0.036초

Creep Analysis on Pressure Tube Wall Thickness Variation

  • Kim, Jung-Gyu;Hwang, Jong-Keun;Park, Keon-Woo;Kim, Tae-Hyung;Rhee, Hui-Nam
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.295-299
    • /
    • 1996
  • This analysis is to investigate the benefits and disadvantages of increasing the pressure tube wall thickness for CANDU reactor. Creep analysis of the pressure tube was performed for slightly enriched uranium (SEU) to establish the reduction in axial elogation and diametral creep provided by a thicker wall pressure tube.

  • PDF

원전 6단 급수가열기 추기증기 입구노즐 주변의 동체 국부 감육 원인 분석 (Analysis of Local Wall Thinning around the Extraction Steam Entrance for the 6th Feedwater Heater Shell in the Nuclear Power Plants)

  • 송석윤;김형남
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.54-62
    • /
    • 2009
  • The feedwater heaters are Critical components in a nuclear power plant. As the operation years of heaters go by, the maintenance costs required for continuous operation increase. When the carbon steel components in nuclear make contact with running fluid, the wall thinning caused by FAC (flow accelerated corrosion) can be generated. Local wall thinning is inevitable at the area around wet steam entrance to be attacked due to the long term operation. Sometimes the shell with thinned wall is eventually ruptured. To identify the relationship between the local wall thinning and fluid behavior of the feedwater heater, the practical data of a plant, which were based on ultrasonic thickness measurement tests, were analyzed and CFD(Computed Fluid Dynamics) analyses were performed.

SURFACE ROUGHNESS EFFECTS ON THE COERCIVITY OF THIN FILM HEADS

  • Kim, Hyunkyu;Horvath, M. Pardavi
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.663-666
    • /
    • 1995
  • The domain wall motion coercivity, $H_{c}$, of magnetic materials arises from the dependence of the wall energy on localized changes in material parameters (magnetization, anisotropy, exchange energy densities). However, in an otherwise perfectly homogeneous material, the domain wall energy might change due to the change in the volume of the wall versus the wall position. Thus, any surface roughness contributes to the coercivity. Assuming different two-dimensional surface profiles, characterized by average wavelengths ${\lambda}_{x}$ and ${\lambda}_{y}$, and relative thickness variations dh/h, the coercivity due to the surface roughness has been calculated. Compared to the one dimensional case, the 2D coercivity is reduced. Depending on the ratio of ${\lambda}$ to the domain wall width, $H_{c}$ has a maximum around 2, and increasing with dh/h. With the decreasing thickness of the thin film and GMR heads, it might be the domain factor in determining the coercivity.

  • PDF

쾌속조형의 속도를 향상시키기 위한 알고리즘 (An Algorithm to Speed Up the Rapid Prototyping)

  • 고민석;장민호;왕지남;박상철
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.157-164
    • /
    • 2008
  • While developing physical prototype from CAD model, rapid prototyping mainly focuses on two key points reducing time and material consumption. So, we have to change from a traditional solid model to building a hollowed prototype. In this paper, a new method is presented to hollow out solid objects with uniform wall thickness to increase RP efficiency. To achieve uniform wall thickness, it is necessary to generate internal contour by slicing the offset model of an STL model. Due to many difficulties in this method, this paper proposes a new algorithm that computes internal contours computing offset model which is generated from external contour using wall thickness. Proposed method can easily compute the internal contour by slicing the offset surface defined by the sum of circle swept volumes of external contours without actual offset and the circle wept volumes. Internal contour existences are confirmed by using the external point. Presented algorithm uses the 2D geometric algorithm allowing RP implementation more efficient. Various examples have been tested with implementation of the algorithm, and some examples are presented for illustration.

소수성 다공질 PVDF 중공사 분리막 제조 및 막증류 적용 (Preparation of Hydrophobic Porous PVDF Membrane and Application for Membrane Distillation)

  • 민지희;박민수;김진호
    • 멤브레인
    • /
    • 제24권3호
    • /
    • pp.240-248
    • /
    • 2014
  • 열유도상분리법(TIPS) 및 연신의 복합공정을 적용하여 막증류(Membrane distillation, MD)용 다공성 PVDF 중공사 분리막을 제조하였다. 분리막의 투과도를 증가시키기 위하여 분리막 투과도를 향상시킬 수 있는 성능인자들 중 분리막의 벽두께를 감소시키고자 하였다. 분리막의 두께를 감소시키기 위하여 분리막 제조 시 토출량을 감소시키고 중공 형성 시 주입하는 bore fluid 주입량을 증대시켰다. 토출량의 감소 및 bore fluid의 증가에 따라 벽두께는 감소하였고, 공기투과도와 수투과도는 크게 증가하였으며, 결과적으로 막증류 공정에 적용 시 투과플럭스도 증가하는 경향을 보여 주었다.

Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.463-476
    • /
    • 2021
  • The concept of using Steel-concrete (SC) composite walls as retaining walls has recently been introduced by the authors and their effectiveness of resisting out-of-plane loads has also been demonstrated. In this paper, an improved analytical formulation based on partial interaction theory, which has previously been developed by the authors, is presented. The improved formulation considers a new loading condition and also accounts for cracking in concrete to simulate the real conditions. Due to a limited number of test specimens, further finite element (FE)simulations are performed in order to verify the analytical procedure in more detail. It is observed that the results from the improved analytical procedure are in excellent agreement with both experimental and numerical results. Moreover, a detailed parametric study is conducted using the developed FE model to investigate effects of different parameters, such as distance between shear connectors, shear connector length, concrete strength, steel plate thickness, concrete cover thickness, wall's width to thickness ratio, and wall's height to thickness ratio, on the behavior of SC composite walls subjected to out-of-plane loads.

체적의 변화를 통한 방광벽 두께와 기계적 재료상수 변화가 배뇨근 활동에 미치는 영향 (Effect of Bladder Wall Thickness Through Change of Bladder Volume and Material Properties on Detrusor activity Study)

  • 전수민;이문규;최범규
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.584-590
    • /
    • 2012
  • The structural and functional disorder of a detrusor induces a bladder hypertrophy and degenerates a bladder muscle gradually by preventing normal urination. Thus, the thickness of the bladder wall has been increased in proportion to the degree of bladder outlet obstruction. In this study, the mechanical characteristics of the detrusor is analyzed for the physical properties and the thickness changes of the bladder muscle using a mathematically analytic method. In order to obtain the mechanical property of the bladder muscle, the tensile test of porcine bladder tissue is performed because its property is similar to that of human. The result of tensile test is applied to the mathematically model as Mooney Rivlin coefficients which represent the hyperelastic material. The model of the bladder is defined as the spherical shape with the initial volume of 50ml. The principal stress and strain according to the thickness are analyzed. Also, computer simulations for three types of the material property for the model of the bladder are performed based on the fact that the stiffness of the bladder is weakened as the progress of the benign prostatic hyperplasia. As a result, the principal stress is 341kPa at the initial thickness of 2.2mm, and is 249kPa at 6.5mm. As the bladder wall thickness increases, the principal stress decreases. The principal stress and strain decrease as the stiffness of the bladder decreases under the same thinkness.

친환경 황토벽체의 차음성능 평가에 관한 연구 (The sound insulation performance of eco-friendly loess brick wall)

  • 이태강;김율;송국곤;김선우
    • KIEAE Journal
    • /
    • 제9권6호
    • /
    • pp.13-18
    • /
    • 2009
  • Korean traditional houses have been developed in harmony with natural environment and comfortable indoor condition by using the natural resources including building layout, space composition and materials. Originally Korea traditional architectures have used wood lintel constructions and loess walls through the many years. Theses loess have many strength such as highly heat capacity, controling of humidity, a deodorant than any other materials. Nowaday it is recommended to use exterior and interior walls in loess wall to meet the eco-friendly materials to improve our residental environmental. Thus this study aims to research the sound insulation performance of traditional loess brick wall varied with thickness, thermal insulation materials and cavity wall. The sound insulation performance of these loess walls are compared with other masonry wall's and sound insulation performance of th walls were tested in anechoic laboratory to measure the sound transmission loss of these walls. The loess brick wall with 75mm thickness of cavity is shown the sound insulation performance with Rw 57 which is nearly same performances of 1B brick wall and cement 8' block wall, The improving effect of insulation materials is shown in the high frequency bandwidth. Especially, there is improving as much as 11 dB using the extruded poly stylene form(75mm) and poly ethylene film(0.7mm).

술전ㆍ후 상악동염환자와 정상인의 상악동 크기 및 골벽두께에 관한 전산화단층방사선학적 연구 (A Computed Tomographic Study on the Size and Bone Wall Thickness of the Maxillary Sinus in Normal, Preoperative and Postoperative Maxillary Sinusitis Patients)

  • 최선영;이상래;고광준
    • Imaging Science in Dentistry
    • /
    • 제30권2호
    • /
    • pp.109-116
    • /
    • 2000
  • Purpose : To compare the size and bone wall thickness of the maxillary sinus in normal, preoperative and postoperative maxillary sinusitis patients. Materials and Methods : The author analyzed CT images of both left and right maxillary sinuses in 357 patients who visited Chonbuk National University Hospital between January 1997 and December 1998. The size and bone wall thickness of the maxillary sinus of normal, inflammatory and post-Caldwell-Luc groups were compared. Results: The significant differences of transverse, maximum medio-lateral, maximum supero-inferior dimensions and medio-lateral dimension at nasal floor level between normal and post-Caldwell-Luc groups were found (P<0.05). And the significant differences of antero-posterior dimensions between inflammatory and post-Caldwell-Luc group were found (P<0.05). But, no significant differences of vertical height dimensions between groups was found (P>0.05). The significant differences of postero-lateral, infero-lateral and medial wall thickness between normal and post-Caldwell-Luc groups were found (P<0.05). Conclusion : The results of this study will aid in the diagnosis and treatment of maxillary sinus diseases and post operative treatment planning.

  • PDF

스테인리스 평활관의 관 두께 및 표면거칠기에 따른 R-134a 의 관외측 응축 열전달 특성 연구 (Condensation Heat Transfer Characteristics of R-134a with Wall Thickness and Surface Roughness on Stainless Steel Horizontal Plain Tubes)

  • 허재혁;윤린;이용택;김용찬
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1203-1210
    • /
    • 2006
  • The filmwise condensation heat transfer coefficients of R-134a on the horizontal copper and stainless steel tubes were measured and analyzed. The outside diameter of the tubes was 15.88 mm, and the tube thickness ranged from 0.89 to 1.65 mm. The polished stainless steel tube had an RMS surface roughness($R_q$) of 0.37 $\mu$m, and commercial stainless steel tubes had an surface roughness($R_q$) of 1.855 $\mu$m. The tests were conducted at the saturation temperatures of 20 and $30^{\circ}C$, and the liquid wall subcoolings from 0.4 to $2.1^{\circ}C$. The measured condensation heat transfer coefficients were significantly lower than the predicted data by the Nusselt analysis. This trend in the stainless steel tube was explained by the effects of thermal resistance of tube material and surface roughness. Based on the experimental data with respect to wall thickness and surface roughness, it was suggested that the existing correlation on external condensation should be modified by considering material and surface roughness factors. The revised correlation was developed by introducing the effects of wall thickness and surface roughness into the Nusselt equation. The average deviation of the revised correlation was 13.0 %.