• Title/Summary/Keyword: Wall system

Search Result 3,577, Processing Time 0.031 seconds

A Study on a Self-supported Earth Retaining Wall with Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 개발)

  • Sim, Jae-Uk;Back, Sung-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1461-1467
    • /
    • 2005
  • In this study, a new earth retention system has been developed and introduced. This system is a self-supported earth retaining wall without struts. The new earth retention system consists of connected double H-pile and wale. This system provides a larger spacing of support, economical benefit, construction easiness, good performance and safety. This paper explains basic principles and mechanism of self-supported earth retaining wall. In order to investigate applicability and safety of this system, numerical analysis was performed. The finite differential method program, FLAC3D is used. The predicted performances of this system were presented and discussed.

  • PDF

Thermal Performance of TI-wall System (투과형단열재 부착 건물외피구조체의 열성능)

  • Yoon, Yong-Jin;Kim, Hea-Jeong;Kim, Byoung-Soo
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.121-128
    • /
    • 2004
  • One of the most weak parts for energy loss through the whole building components are building envelopes. Lots of technbologies to increase the thermal performance of building envelopes have been introduced in recent years. Transparent insulation is a new technology for building insulation and has function both solar transmittance and thermal insulation. This study has been carried out to develope the transparent insulation panels and TI-wall system and to analyze the thermal performance of TI-wall system by experiments using test-cell and dynamic energy simulation program ESP-r 9.0. This system is regarded as a efficient building envelope system suitable for to reduce the heating and cooling load of the buildings in our country.

Case Study of Self-Supported Diaphragm Wall Method Using Counterfort Technique (부벽식 기법을 사용한 자립식 지하연속벽 공법의 사례 연구)

  • Jeong, Gyeong-Hwan;Park, Hun-Kook;Shin, Min-Sik;Han, Kyoung-Tae;Ryu, Ji-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.276-285
    • /
    • 2006
  • Application of anchored or strutted wall system for the earth retention of excavation works in a populated urban area or a poor soil deposit can be limited due to various restrictions. Since the strut becomes longer in a wide excavation site, the stability of an earth retaining wall is decreased, the wall deformation is increased, and the ground settlement is also increased due to an increased buckling or bending deformation of struts. Especially, in a populated urban area, the installation of anchors can be problematic due to the property line of adjacent structures or facilities. Thus, a new concept of earth retaining system like Self-Supported diaphragm Wall can solve several problems expected to occur during excavation in the urban area. In this study, Numerical analyses of counterfort diaphragm wall was introduced and the monitored data from the site was compared with the original results of numerical analyses. Also, in the case of the deep excavation applied the counterfort diaphragm wall, numerical analyses was performed to predict the wall deformation and the reinforcement to reduce the wall deformation was suggested.

  • PDF

Effects of Green Wall System Controling Indoor Thermal Environments and Carbon Dioxide (벽면 녹화가 실내 온열환경 및 이산화탄소 농도 조절에 미치는 영향)

  • Sin, Junghwan;Kim, Hwanyi;Kim, Sughwan;Kim, Sumin;Chang, Jae D.
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • Importance of energy consumptions has being emphasized because of problems of the energy and environment. So, recently, green wall systems have been installed to reduce building energy consumptions. The green wall systems provide several benefits; they make it possible to maintain moderate thermal comforts by greenery. Greening such a surface wall in the building by plants, the temperature of the wall can be properly controlled that purifies the air and improves the view spanning over the space. This study evaluated the effects of green wall systems on reducing room temperature quantitatively, changing of humidity, decreasing of $CO_2$. Test results were confirmed; first, the space installed by green walls showed that temperature and $CO_2$ decreased and humidity was increased. Second, two structures were compared with the solar radiation, and green wall systems controlled the temperature and humidity stably near the wall regardless of the amount solar radiation. In conclusion, the green wall systems can contribute to thermal comforts and indoor air quality in the buildings.

  • PDF

Behavior Analysis According to the Shear Wall Layout of Column-Supported Wall System Subject to Vertical and Lateral Loads (연직 및 횡하중이 작용하는 상부벽식-하부골조구조물의 벽체 배치유형에 따른 거동 해석)

  • Lee, Dae-Hyeon;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.53-61
    • /
    • 2004
  • Recently, most of residential-commercial buildings and apartment houses which are being constructed in the downtown area mainly adopt hybrid structural systems to compose various spaces. Especially, column-supported wall system which is one of the hybrid systems includes shear wall and rigid frame structure and these structures are connected by the transfer floor. But this system is very disadvantageous from the viewpoint of structural safety and is difficult to find out the stress distribution at the transfer floor. Therefore, this study analyzes the behavior and stress distribution according to the shear wall layout of transfer girder system subject to vertical and static lateral loads. Also, this study recognizes load paths and stress concentration based on the analysis results nearby the transfer floor and presents guidelines for the effective design of wall and transfer girder.

  • PDF

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

OPTIMIZING QUALITY AND COST OF METAL CURTAIN WALL USING MULTI-OBJECTIVE GENETIC ALGORITHM AND QUALITY FUNCTION DEPLOYMENT

  • Tae-Kyung Lim;Chang-Baek Son;Jae-Jin Son;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.409-416
    • /
    • 2009
  • This paper presents a tool called Quality-Cost optimization system (QCOS), which integrates Multi-Objective Genetic Algorithm (MOGA) and Quality Function Deployment (QFD), for tradeoff between quality and cost of the unitized metal curtain-wall unit. A construction owner as the external customer pursues to maximize the quality of the curtain-wall unit. However, the contractor as the internal customer pursues to minimize the cost involved in designing, manufacturing and installing the curtain-wall unit. It is crucial for project manager to find the tradeoff point which satisfies the conflicting interests pursued by the both parties. The system would be beneficial to establish a quality plan satisfying the both parties. Survey questionnaires were administered to the construction owner who has an experience of curtain-wall project, the architects who are the independent assessor, and the contractors who were involved in curtain-wall design and installation. The Customer Requirements (CRs) and their importance weights, the relationship between CRs and Technical Attributes (TAs) consisting of a curtain-wall unit, and the cost ratios of each components consisting curtain-wall unit are obtained from the three groups mentioned previously. The data obtained from the surveys were used as the QFD input to compute the Owner Satisfaction (OS) and Contractor Satisfaction (CS). MOGA is applied to optimize resource allocation under limited budget when multi-objectives, OS and CS, are pursued at the same time. The deterministic multi-objective optimization method using MOGA and QFD is extended to stochastic model to better deal with the uncertainties of QFD input and the variability of QFD output. A case study demonstrates the system and verifies the system conformance.

  • PDF

Finite Element Analysis of Earth Retention System with Prestressed Wales (프리스트레스트 띠장을 적용한 흙막이 시스템의 유한요소해석)

  • Park, Jong-Sik;Kim, Sung-Kyu;Joo, Yong-Sun;Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.25-34
    • /
    • 2008
  • A finite element analysis was performed for new earth retention system with prestressed wales. A 3D finite element model was adopted in this study to investigate the behavior of the earth retention system with prestressed wales. A procedure of the 3D finite element modeling of this earth retention system was presented. The procedure included the modeling of soil, wall, strut, and members of prestressed wale system which consists of wale, support leg, and steel wires, and the interface modeling of soil-wall and wall-wale. The numerical predictions of lateral wall deflection, and axial load on the members of prestressed wale systems and struts were evaluated in comparison with the measurements obtained from field instruments. A sensitivity analysis was performed using the proposed 3D finite element model to investigate the behavior of new earth retention system on a wide range of prestress load conditions of steel wires. The lateral deflection of the wall and wale, the bending moment of the wale, and the lateral earth pressure distribution on the wall were computed. Implications of the results from this study were discussed.

A comparative study for the decay of chlorine residual using EPANET2.0 and an experimental pipeline system (EPANET 2.0과 관망실험을 통한 배수관망 염소농도 감쇄 비교연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.411-419
    • /
    • 2018
  • The residual chlorine concentration is an essential factor to secure reliable water quality in the water distribution systems. The chlorine concentration decays along the pipeline system and the main processes of the reaction can be divided into the bulk decay and the wall decay mechanisms. Using EPANET 2.0, it is possible to predict the chlorine decay through bulk decay and wall decay based on the pipeline geometry and the hydraulic analysis of the water distribution system. In this study, we tried to verify the predictability of EPANET 2.0 using data collected from experimental practices. We performed chlorine concentration measurement according to various Reynolds numbers in a pilot-scale water distribution system. The chlorine concentration was predicted using both bulk decay model and wall decay model. As a result of the comparison between experimental data and simulated data, the performance of the limited $1^{st}$-order model was found to the best in the bulk decay model. The wall decay model simulated the initial decay well, but the overall chlorine decay cannot be properly predicted. Simulation also indicated that as the Reynolds number increased, the impact of the wall.