• Title/Summary/Keyword: Wall Thinning Area

Search Result 48, Processing Time 0.026 seconds

Evaluation of Piping Integrity in Thinned Main Feedwater Pipes

  • Park, Young-Hwan;Kang, Suk-Chull
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.67-76
    • /
    • 2000
  • Significant wall thinning due to flow accelerated corrosion(FAC)was recently reported in main feedwater pipes in 3 Korean pressurized water reactor(PWR) plants. The main feedwater pipes in one plant were repaired using overlay weld method at the outside of pipe, while those in 2 other plants were replaced with new pipes. In this study, the effect of the wall thinning in the main feedwater pipes on piping integrity was evaluated using finite element method. Especially, the effects of both the overlay weld repair and the stress concentration in notch-type thinned area on the piping integrity were investigated. The results are as follows : (1) The piping load carrying capacity may significantly decrease due to FAC. In special, the load carrying capacity of the main feedwater pipe was reduced by about 40% during about 140 months operation in Korean PWR plants. (2) By performing overlay weld repair at the outside of pipe, the piping load carrying capacity can increase and the stress concentration level in the thinned area can be reduced.

  • PDF

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

A Study on Advanced Impinging Baffle Model in Extraction Nozzle of a Feedwater Heater (급수가열기 추기노즐의 개선된 충격판 모델에 관한 연구)

  • Lee, Woo;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.18-29
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test.

  • PDF

Failure Investigation of Fire-Side Water-Wall Tube Boiler

  • Fatah, M.C.;Agustiadi, D.;Pramono, A.W.
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.242-248
    • /
    • 2021
  • Unforeseen failures of boilers in power plants may affect the continuation of electricity generation. Main failures in boilers are influenced by the tube material, tube position, boiler service temperature and pressure, and chemical composition of the feed water and coal. This investigation was intended to find answers on the causes and mechanism of failure of the fire-side boiler water-wall tubes, due to perforation and corrosion. The tube conformed to the material requirements in terms of its chemical composition and hardness. Microscopic examination showed ferrite and pearlite indicating no changes in its microstructure due to the temperature variation. SEM test showed a single layer and homogenous film density particularly on the area far from perforation. However, layers of corrosion product were formed on the nearby perforation area. EDX showed that there were Na, Ca, S, and O elements on the failed surface. XRD indicated the presence of Fe2O3 oxide. The failure mechanism was identified as a result of significant localized wall thinning of the boiler water wall-tube due to oxidation.

Failure Assessment and Strength of Steam Generator Tubes with Wall Thinning (증기발생기 전열관 감육부의 강도 및 손상평가)

  • Seong, Ki-Yong;Ahn, Seok-Hwan;Yoon, Ja-Moon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.50-59
    • /
    • 2007
  • Steam generator tubes are degraded from wear, stress corrosion cracking, rupture and fatigue and so on. Therefore, the failure assessment of steam generator tube is very important for the integrity of energy plants. In the steam generator tubes, sometimes, the local wall thinning may result from severe degradations such as erosion-corrosion damage and wear due to vibration. In this paper, the elasto-plastic analysis was performed by FE code ANSYS on steam generator tubes with wall thinning. Also, the four-point bending tests were performed on the wall thinned specimens, and then it was compared with the analysis results. We evaluated the failure mode, fracture strength and fracture behavior from the experiment and FE analysis. Also, it was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area from FE analysis.

A Study on the Relief of Shell Wall Thinning of High pressure Feedwater Heater (고압형 급수가열기 동체 감육 완화에 관한 연구)

  • Kim, Hyung-Joon;Park, Sang-Hoon;Seo, Hyuk-Ki;Kim, Kyung-Hoon;Hwang, Kyung-Mo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2664-2669
    • /
    • 2008
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line- inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

  • PDF

Monitoring Method for Pipe Thinning using Accelerometers (가속도계를 이용한 배관 감육 감시 방법)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Sohn, Chang-Ho;Hwang, Il-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.156-162
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time-frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

  • PDF

Monitoring Pipe Thinning Using Time-frequency Analysis (시간-주파수 기법을 이용한 배관 감육 감시 방법)

  • Sohn, Chang-Ho;Park, Jin-Ho;Yoon, Doo-Byung;Chong, Ui-Pil;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1224-1230
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time -frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.

Failure Behavior of T-joint Pipe with Outer Local Wall Thinning under Internal Pressure (내압을 받는 외부 국부 감육 T-joint 배관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.80-87
    • /
    • 2014
  • The pipelines are apt to erosion or corrosion because of the high-speed flow of water and steam with high temperatures or high pressures. This study was carried out a finite element analysis (FEA) and an experimental for the fracture behavior of T-joint pipes with local wall thinning under internal pressure. Local wall thinning was machined on the pipes in order to simulate erosion and corrosion of the metal. The configurations of the eroded area included an eroded ratio of d/t=0.80~0.963 and an eroded length of l=25 mm, 50 mm, and 102 mm. Three-dimensional elastic-plastic analyses were also carried out using FEA, which accurately simulates failure behaviors. In regards to the relationship between pressure and eroded, the criterion that indicates what can be used safely under operating pressure and design pressure were obtained from FEA. The FEA results were in relatively good agreement with that of the experiment.