• Title/Summary/Keyword: Wall Insulation

Search Result 379, Processing Time 0.03 seconds

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

Sensitivity Analysis of Energy Efficient Refurbishment Strategies for Detached Houses in Three Climate Zones (지역별 단독주택 에너지 절감 리모델링 전략 민감도 분석)

  • Lee, Byungyun;CHEN, HAICHAO
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.518-527
    • /
    • 2020
  • The establishment of a green remodeling strategy is focused on technology, so the necessity of establishing a customized strategy considering the field situation has emerged. This paper examined the technology strategy through sensitivity analysis as a methodology for guiding strategy. For a 90-square-meter detached house, nine models of the construction standards of pre-1980s, 1984, and 2010 in Seoul, Daejeon, and Busan were assessed using the optimization method that combines the energy plus engine and the ModeFrontier. Sensitivity analysis was performed, and the remodeling strategy priority was derived. For pre-1980 models, the strategy for enhancing the roof insulation performance had a significant priority. The SHGC values of the windows were found to have the next highest priority regardless of the region and the time of completion, showing that the performance standard, including the SHGC, needs to be expanded. The possibility of remodeling while maintaining the existing geometry was confirmed because the adjustment of the window wall ratio accompanying large-scale demolition works has low priority. The priorities of technology strategies in each case showed very different patterns, suggesting the possibility of establishing a remodeling strategy by a comprehensive evaluation along with economics and constructability analysis.

The effect of posture on the human thermoregulatory response (인체의 자세가 체온조절에 미치는 영향)

  • Shim, Hyun Sup;Choi, Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.415-427
    • /
    • 1993
  • The purpose of this study was to evaluate the thermoregulatory responses to postures under different environmental conditions and to obtain the basal information for standard clothing weight, indoor climates, and working condition. Two adult female (22.5yrs, 46kg) were participated in this study. The experimental conditions were divided into three groups ; 1) comfort($27{\pm}1^{\circ}C$, $60{\pm}10%$), 2) hot($34{\pm}1^{\circ}C$, $60{\pm}10%$), and 3) cold($21{\pm}1^{\circ}C$, $50{\pm}10%$) condition. The postures performed were as follows; standing, sitting on the chair, sitting on the floor, and supine on the floor. At each condition, subjective sensations, 12 points skin temperature, rectal temperature, total and local sweat rate, pulse rates, blood pressure, skin blood flow rate were measured. The results were as follows : 1. Rectal temperature was high significant among groups in order of supine, sitting on the floor, sitting on the chair, standing posture(p<0.01). 2. Skin temperature was high in part of contact with the surface of the floor or wall and the effect of posture was greater in peripheral temperature than torso temperature. Sitting on the chair and sitting on the floor posture showed higher peripheral temperature than standing and supine posture. And peripheral temperature was lower in supine posture than any other postures. 3. Total and local sweat rate were decreased in order of standing, sitting on the chair, sitting on the floor, supine posture. 4. Pulse rate and disastolic blood pressure were higher in standing posture than supine posture, and there was significant difference between two postures(p<0.001). 5. Blood flow rate of thigh was high in sitting on the chair and sitting on the floor posture and low in standing posture. Blood flow rate of leg was low in standing posture significantly(p<0.01). 6. In comfort and hot condition, temperature sensation and comfort sensation were higher in standing posture and lower in supine posture than any other postures. In cold condition, temperature sensation was lower and comfort sensation was higher in standing and supine posture than any other postures. And supine posture was appeared positive in hot condition and negative in cold condition. From this study, we confirmed the effects of posture on human thermoregulatory responses. Results indicate that even under same conditions and clothing weight, the insulation of clothing will be different to postures.

  • PDF

A Study on the Property Changes of Rigid Polyurethane Foams by Nucleating Effects of PFA and MWCNT (PFA 및 MWCNT의 기핵효과에 의한 경질 폴리우레탄 폼의 물성 변화에 대한 연구)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2945-2950
    • /
    • 2015
  • While perfluoroalkane (PFA), a liquid state nucleating agent for a rigid polyurethane foam (RPUF) to enhance the thermal insulation property, has the excellent nucleating characteristics, it is very expensive as well as environmentally harmful due to the fluoride compound. Many researches, therefore, have been performed to develop the alternative nucleating agents to replace PFA. In the present work, a multi-wall carbon nanotube (MWCNT) was used as a sloid state nucleating agent, and thereby the effects on the property changes of the RPUF were carried out. Average cell size decreased from 165.6 for base RPUF to $162.9{\mu}m$ and cell uniformity was also enhanced, showing the standard cell-size deviation of 45.6 and 35.2, respectively. While k-factor of base PUF was $0.01763kcal/m.hr.^{\circ}C$, that of the sample with 0.01 phr MWCNT showed 1.02% reduced value of $0.01745kcal/m.hr.^{\circ}C$. Though the compressive yield stress is nearly the same as $0.030{\times}105Pa$ for the both samples, initial modulus of the sample with 0.01 phr MWCNT was higher than that of base sample. it was considered as the results that small amount of MWCNT could play a sufficient role as the effective nucleating agent for RPUF, showing that an echo-friendly RPUF with reduced-cost could be fabricated, which has an enhanced thermal and mechanical properties.

Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers (발포제 함량에 따른 경량 다공성 지오폴리머의 밀도와 강도 특성)

  • Lee, Sujeong;An, Eung-Mo;Cho, Young-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Lightweight geopolymers are more readily produced and give higher fire resistant performance than foam cement concrete. Lowering the density of solid geopolymers can be achieved by inducing chemical reactions that entrain gases to foam the geopolymer structure. This paper reports on the effects of adding different concentrations of aluminum powder on the properties of cellular structured geopolymers. The apparent density of lightweight geopolymers has a range from 0.7 to $1.2g/m^3$ with 0.025, 0.05 and 0.10 wt% of a foaming agent concentration, which corresponds to about 37~60 % of the apparent density, $1.96g/cm^3$, of solid geopolymers. The compressive strength of cellular structured geopolymers decreased to 6~18 % of the compressive strength, 45 MPa of solid geopolymers. The microstructure of geopolymers gel was equivalent for both solid and cellular structured geopolymers. The workability of geopolymers with polyprophylene fibers needs to be improved as in fiber-reinforced cement concrete. The lightweight geopolymers could be used as indoor wall tile or board due to fire resistance and incombustibility of geopolymers.

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

A Study on the Thermal Conductivity Measurement for Planting Mats of Landscaping (조경용 식생매트의 열전도율 측정에 관한 연구)

  • Cha, Uk Jin;Yang, Geon Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.85-96
    • /
    • 2018
  • Developed nations have implemented various policies to reduce greenhouse gases since the 1997 Kyoto Protocol in order to minimize the effects of global warming. Korea should also reduce energy consumption in the industrial sector, and the transportation and building sectors in order to achieve its greenhouse gas reduction target of 37 percent compared to the Business As Usual levels. The government implements various laws and regulations for reducing energy consumption. To reduce energy consumption in the building sector, in particular, the Energy Conservation Design Standards are enforced according to the 'Enforcement Support for Green Building Construction'. The amount of electricity used to maintain room temperature at $28^{\circ}C$ in these buildings have a 30% reduction (measured on the walls and rooftop) in power usage compared to buildings not required to meet these standards. Although the effect of these energy savings on landscaping is proven, this demonstration is not effective for energy saving since it is not a suitable method for the 'Energy Saving Design Standards of Buildings'. For landscaping to be effective as far as a component of energy reduction, the perfusion rate of the building should be calculated based on the thermal conductivity of the component materials for the energy saving designs with respect to the basis of Article 14 of the Green Building Act. Therefore, the purpose of this study is to ensure that the planting-based mats currently being widely used in the landscape industry can have insulating performance suitable for the 'Energy Saving Design Standards' of Buildings according to the 'Enable Green Building Construction Methods'.

TECHNICAL STUDY ON THE CONTROLLING MECHANIQUES OF THE ENVIRONMENTAL FACTORS IN THE MUSHROOM GROWING HOUSE IN CHONNAM PROVINCE (전남지방(全南地方)에 있어서의 양송이 재배(栽培)에 최적(最適)한 환경조건(環境條件) 조절법분석(調節法分析)에 관(關)한 연구(硏究))

  • Lee, Eun Chol
    • Journal of Korean Society of Forest Science
    • /
    • v.9 no.1
    • /
    • pp.1-44
    • /
    • 1969
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demostrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental houses showed a sufficient heat insulation on effect to protect insides of the houses from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar houses to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on-ground type house, and (2) the solar heat generating system should be reconstructed properly. A trial solar heat generating system is shown in Fig. 40. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom houses. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that x is the outside temperature and y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between x and y can be expressed by the following regression lines. Underground iron pipe ventilation system ${\cdots}{\cdots}$ y=0.9x-12.8 Underground earthen pipe ventilation system ${\cdots}{\cdots}$y=0.96x-15.11 Vertical side wall ventilation system${\cdots}{\cdots}$ y=0.94x-17.57 5. The experimental results have shown that the relationships existing between the admitted and expelled air and the $Co_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 1) If it is assumed that x is an air speed cm/sec. and y is an expelled air speed in cm/sec. in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below: 2) If it is assumed that x is an admitted volume of air in $m^3/hr$ and y is an expelled volume of air in $m^3/hr$ in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below. 3) If it is assumed that the expelled air speed in cm/sec and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as x and y, respectively, since the y is a function of the x, the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}$ y=0.54X+0.84 4) If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as x, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as y, in a natural ventilation system, since the y is a function of the x the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}{\cdots}$ y=114.53-6.42x 5) If it is assumed that the expelled volume of air is shown as x and the $CO_2$ concentration which is expressed by multiplying 1000 times the actual of $CO_2$ % is shown as y in a natural ventilation system, since the y is a function of of the x, the relationships that exist between x and y can be expressed by the following exponent equation: G.E. (100%)-C.V. (50%) ventilation system${\cdots}{\cdots}$ $$y=127.18{\times}1.0093^{-X}$$ 6. The experimental results have shown that the ratios of the crass sectional area of the G.E. and C.V. vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: G.E. (admitting vent of the underground ventilation)${\cdots}{\cdots}$ 0.30-0.5% (controllable) C.V. (expelling vent of the ceiling ventilation)${\cdots}{\cdots}$ 0.8-1.0% (controllable) 7. Among several heating devices which were studied in the experiments, the hot-water boilor which was modified to be fitted both as hot-water toiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF