• Title/Summary/Keyword: Wall Function

Search Result 948, Processing Time 0.023 seconds

Noise Estimation in a Passenger Compartment and Trunk Coupled System by Using the Vibro-Acoustic Reciprocity (진동-음향 상반성을 이용한 차실-트렁크 연성계의 소음평가)

  • Lee, Jin-Woo;Lee, Jang-Moo;Kim, Seock-Hyun;Park, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.618-622
    • /
    • 2000
  • This paper describes the correlation between the interior noise and the trunk wall vibration. Using the vibro-acoustic reciprocity, effect of the trunk wall vibration on the compartment noise is investigated on a medium size car. In the low frequency range, vehicle interior noise is dominated by several acoustic modes of the passenger compartment and the vibration modes of the surrounding shell parts. Especially, vibration of the trunk wall radiates sound and it is transferred through holes on the package tray into the passenger compartment. This paper experimentally reveals that sound can be well produced at some particular vibration modes of the trunk lid and it strongly influences the compartment noise through package tray holes. Contributions of the trunk walls to the interior noise are estimated by measuring the acoustic-structural transfer function, based on the vibro-acoustical reciprocity theorem.

  • PDF

Performance Evaluation of Wall Blower Nozzle using Erosion Analysis (침식 해석을 이용한 월 블로워 노즐의 성능 예측)

  • Paek, Jae Ho;Jang, llkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.175-182
    • /
    • 2018
  • Accumulation of coal ash at the boiler wall reduces combustion and fuel efficiency. The design of a wall blower is important to effectively remove coal ash. We present numerical results for the removal of coal ash from boiler walls of domestic coal-fired power plants, associated with the computational fluid dynamics for the flow from spray nozzle to boiler wall. The numerical model simulates an erosion process in which the multiphase fluid comprising saturated vapor and fluid water is sprayed from the nozzle, and the water particles impact the boiler wall. We adopt the Finnie erosion model for water particles. We obtain the erosion rate density as a function of nozzle angle and its injection angle. As excessive coal ash removal usually induces damage to the boiler wall, the removal operation typically focuses on a large area with uniform depth rather than the maximum removal of coal ash at a specific location. In order to estimate the removal performance of the wall blower nozzle considering several functionality and reliability factors, we evaluate the optimal injection and nozzle angles with respect to the biggest cumulative and highest erosion rates, as well as the widest range and lowest standard deviation of the erosion rate distribution.

Quay Wall Scheduling of Ships Using Assignment Method and Tabu Search Algorithm (할당기법과 타부서치 알고리즘을 이용한 선박의 안벽배치 계획)

  • Lee, Sang Hyup;Hong, Soon Ik;Ha, Seung Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • In shipbuling processes, a quay wall is a major resource for additional operations after an erection operation at dock. A quay wall is becoming a new bottleneck instead of docks, while ship types with long operation time at quay wall are increasing recently. We developed a quay wall scheduling algorithm for the quayside operations of ships in this paper. The objective function is to minimize the sum of not assigned days of ships which have to be assigned to any quay wall under limited numbers of quay walls. The scheduling algorithm is based on an assignment method to assign each ship to a quay wall among its alternative quay walls at the time of launching or moving to another quay wall. The scheduling algorithm is also using Tabu Search algorithm to optimize assignment sequence of ships. The experiment shows that the algorithms in this paper are effective to make schedule of the quayside operations of ships.

A Case of Thickened Gallbladder Wall and Pneumonia in a Child with Infectious Mononucleosis (담낭염과 폐렴을 동반한 전염성 단핵구증 1례)

  • Kim, Hyun Soo;Kim, Hyung Suk;Shin, Young Kyoo;Eun, Baik Lin;Park, Sang Hee;Cha, Sang Hoon
    • Pediatric Infection and Vaccine
    • /
    • v.4 no.1
    • /
    • pp.167-173
    • /
    • 1997
  • Acute infectious mononucleosis, caused by Epstein-Barr virus(EBV), is a self limited lymphoproliferative illness that is common in adolescents and young adults. It shows many complications in multiple organ systems, but the hepatobiliary and the respiratory complication is uncommon. We report a case with thickened gallbladder wall and pneumonia as complications of acute infectious mononucleosis in a child. Also the related literature were reviewed. A 4 year old boy presented with a history of high fever, cough, and abdominal distension for 20days. Physical Examination revealed audible crackles in whole lung field and gross hepatomegaly. Chest X-ray showed pneumonia and liver function tests were abnormal. Ultrasonography and computed tomography revealed a thickened gallbladder wall and hepatosplenomegaly. The diagnosis of primary Epstein-Barr viral infection was eventually made by specific serologic tests. The patients's fever subsided 6 weeks later and pneumonia was recovered around this time. Liver function tests returned near normal 2 months later and ultrasonography of gallbladder was normal at this time.

  • PDF

Investigation on the wall function implementation for the prediction of ship resistance

  • Park, Sunho;Park, Se Wan;Rhee, Shin Hyung;Lee, Sang Bong;Choi, Jung-Eun;Kang, Seon Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.33-46
    • /
    • 2013
  • A computational fluid dynamics (CFD) code, dubbed SNUFOAM, was developed to predict the performance of ship resistance using a CFD tool kit with open source libraries. SNUFOAM is based on a pressure-based cell-centered finite volume method and includes a turbulence model with wall functions. The mesh sensitivity, such as the skewness and aspect ratio, was evaluated for the convergence. Two wall functions were tested to solve the turbulent flow around a ship, and the one without the assumption of the equilibrium state between turbulent production and dissipation in the log law layer was selected. The turbulent flow around a ship simulated using SNUFOAM was compared to that by a commercial CFD code, FLUENT. SNUFOAM showed the nearly same results as FLUENT and proved to be an alternative to commercial CFD codes for the prediction of ship resistance performance.

Analysis for computing heat conduction and fluid problems using cubic B-spline function (3차 B-spline 함수를 이용한 열전도 및 유체문제의 해석)

  • Kim, Eun-Pil
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 1998
  • We make use of cubic B-spline interpolation function in two cases: heat conduction and fluid flow problems. Cubic B-spline test function is employed because it is superior to approximation of linear and non-linear problems. We investigated the accuracy of the numerical formulation and focused on the position of the breakpoints within the computational domain. When the domain is divided by partitions of equal space, the results show poor accuracy. For the case of a heat conduction problem this partition can not reflect the temperature gradient which is rapidly changed near the wall. To correct the problem, we have more grid points near the wall or the region which has a rapid change of variables. When we applied the unequally spaced breakpoints, the results show high accuracy. Based on the comparison of the linear problem, we extended to the highly non-linear fluid flow problems.

  • PDF

A Study on the transformation Pross of Vernacular Houses in Ulleung-Island -Focused on wall, roof, window and ceiling- (울릉도 민가의 변화과정에 관한 연구 -벽체, 지붕, 창호, 천장을 중심으로-)

  • Kim Chan-Yeong
    • Journal of the Korean housing association
    • /
    • v.15 no.5
    • /
    • pp.85-96
    • /
    • 2004
  • The purpose of this study was to (md out the characteristics of the residential house in Ulleung Island in terms of building materials, structure and construction method, structural design by actual field surveys. This study found several facts; First, the house was classified into the log house and mud-wall house according to building material for wall structure. The log house prevailed in the early days of the settlement in the island because of affulent timber materials available around. However, the mud wall house became a popular type in later days because of the depletion of timber materials. Second, the Udeki wall was an unique installation reflecting the severe climate conditions of Ulleung Island. However, many aspects of the Udeki wall was changed according to the change of living style and the introduction of modem heating systems in terms of its function, size, building material, layout position etc. Third, the roofing material also has been changed from materials available locally to slate materials transported from the mainland. Fourth, the bamboo slender-ribbed door as a single-swing door type was popular and later time the single-sliding door or three ribbed door was widely used in rooms installed later instead. Fifth, the roof was placed over the room, kitchen, and Chukdam (outer wall) and this was a resonable way to cope with heavy snowfalls in the winter season in Ulleung Island.

Effect of Posterior-Anterior Mobilization of the Thoracic Spine on Pain, Respiratory Function, and Thoracic Circumference in Patients With Chronic Low Back Pain

  • Park, Ju-jung;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2018
  • Background: Posterior-anterior (PA) vertebral mobilization, a manual therapy technique has been used for relieving pain or stiffness treating in spinal segment for in clinical practice, however evidence to gauge efficacy is yet to be synthesised. Objects: This study aimed to investigate the effect of PA mobilization of the thoracic spine on the respiratory function in patients with low back pain (LBP). Methods: The study participants included 30 patients with chronic LBP. They were randomly allocated to the experimental and control groups. The experimental and control groups received PA mobilization of the T1-T8 level of the thoracic spine and placebo mobilization, respectively. All patients received interventions for 35 minutes a day, five times a week, over 2-week period, respectively. Forced vital capacity (FVC), forced expiratory volume in 1 second ($FEV_1$), peak expiratory flow (PEF), forced expiratory flow 25~75% ($FEF_{25{\sim}75%}$), and chest wall expansion were measured before and after the intervention. Statistical analysis was performed using independent t-test and two-way analysis of variance, and Pearson's correlation analysis was used to compare the correlation between respiratory function and chest measurement. Results: The experimental group showed significant improvements in FVC, $FEV_1$, PEF, $FEF_{25{\sim}75%}$ (p<.05), and chest wall expansion (p<.05) compared with the control group. Conclusion: PA mobilization of the upper thoracic spine may be beneficial for improving respiratory function parameters including FVC, $FEV_1$, PEF, $FEF_{25{\sim}75%}$, and chest wall expansion in patients with chronic LBP.

DISTRIBUTION OF FUEL MASS AFTER WALL IMPINGEMENT OF DIESEL SPRAY

  • Ko, K.N.;Huh, J.C.;Arai, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.493-500
    • /
    • 2006
  • Investigation on the fuel adhering on a wall was carried out experimentally to clarify the characteristics of impinging diesel sprays. Diesel sprays were injected into a high-pressure chamber of cold state and impinged to a wall having various impingement distances and ambient pressures. Photographs of both the fuel film and the post-impingement spray were taken through a transparent wall. Adhered fuel mass on a wall was measured by means of dividing into two types of fuel state: the fuel film itself; and sparsely adhered fuel droplets. Adhering fuel ratio was predicted and further the distribution of fuel mass for impinging diesel spray was analyzed as a function of time. As result, with an increase of the ambient pressure, both the maximum fuel film diameter and the adhered fuel ratio decreased. Based on some assumptions, the adhering fuel mass increased rapidly until the fuel film diameter approached the maximum value, and then increased comparatively gradually.

LARGE EDDY SIMULATION OF FULLY TURBULENT WAVY CHANNEL FLOW USING RESIDUAL-BASED VARIATIONAL MULTI-SCALE METHOD (변분다중스케일법을 이용한 파형벽면이 있는 채널 난류 유동의 대와류모사)

  • Chang, Kyoung-Sik;Yoon, Bum-Sang;Lee, Joo-Sung
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • Turbulent flows with wavy wall are simulated using Residual-based Variational Multiscale Method (RB-VMS) which is proposed by Bazilves et al(2007) as new Large Eddy Simulation methodology. Incompressible Navier-Stokes equations are integrated using Isogeometric analysis which adopt the basis function as NURBS. The Reynolds number is 6760 based on the bulk velocity and averaged channel height. And the amplitude (${\alpha}/{\lambda}$) of wavy wall is 0.05. The computational domain is $2{\lambda}{\times}1.05{\lambda}{\times}{\lambda}$ in the streamwise, wall normal and spanwise direction. Mean quantities and turbulent statistics near wavy wall are compared with DNS results of Cherukat et al.(1998). The predicted results show good agreement with reference data.