• Title/Summary/Keyword: Wall Cooling

Search Result 514, Processing Time 0.023 seconds

Effect of supercooling on the cooling in horizontal cylindrical annuli (이중원관의 냉각과정에 미치는 과냉각의 영향)

  • Yun, Jeong-In;Kim, Jae-Dol;Kato, Toyofumi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3313-3321
    • /
    • 1996
  • A fundamental study in cooling and solidification process focused on ice storage was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation in the cooling and freezing processes with supercooling in a space between double cylinders. When water was cooled under the freezing point by a cooling wall in a cavity, solidification was not started at once, but a subcooled region was formed near the wall. Especially, when the cooling rate was low, subcooled region extended to a wide area. However, after a few minutes, supercooling is released by some triggers. Dendritic ice is suddenly formed within a subcooled region, and a dense ice layer begins to be developed from the cooling wall. Due to the difficulties, most previous studies on solidification process with numerical methods had not treated the supercooling phenomena, i.e. the case considering only the growth of dense ice. In this study, natural convection and ice formation considering existence of supercooling and dendritic ice were analyzed numerically with using finite difference method and boundary fixing method. The results of numerical analysis were well compared with the experimental results.

Film Cooling Characteristics with Straight-Slot Coolant Injection by Numerical Study (직선슬롯 분사유동에 의한 막냉각의 열유동 특성에 대한 수치적 연구)

  • Rho, Suk-Man;Son, Chang-Ho;Lee, Geun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.359-366
    • /
    • 2000
  • A numerical study has been performed for the 2-dimensional film cooling employed in the cooling of hot components such as gas turbines. The flow and heat transfer characteristics are numerically simulated using FLUENT software. Blowing ratios vary from 0.25 to 5.0 and coolant injection angles vary from $15^{\circ}\;to\;60^{\circ}\;in\;15^{\circ}$ increment. The result shows that, for all cases, there exists a blowing ratio which maximizes film cooling effect (measured by the distance from the slot exit to the downstream wall location at which temperature increases to 900 K) for a given injection angle. It is also observed that the film cooling effectiveness decreases when downstream wall is sunk or lifted. The simulation has been performed using both constant properties and temperature dependent variable properties. It is found that the cases with constant properties overestimate the film cooling effect considerably.

  • PDF

Characteristics of Cooling Temperature of Cold Water Pipes Buried in the Wall of a Small Mobile Modular House (소형 이동식 모듈주택의 벽면에 냉수배관 매설에 의한 냉방온도 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.110-117
    • /
    • 2022
  • A chiller cooler absorbs the thermal energy of water to generate cold water and supplies the generated cold water to a cold water pipe buried in the wall of a small mobile modular house to greatly increase the cooling area. An attempt was made to reduce the required cooling time significantly. A small chiller cooler suitable for the cooling load of a small mobile modular house with an area less than 3.3 m2 was employed. When cooling is done during summer using a chiller cooler installed outdoors, heat absorption energy loss occurs in the cold water pipe owing to the high temperature. To address this, a study was conducted to reduce the endothermic energy loss significantly. As the mass flow rate of the cold water flowing inside the cold water pipe increased, the temperature decrease gradient of the cold water increased. From the start of the cooling operation, the air temperature of the small mobile modular house decreased linearly in proportion to the operation time. Furthermore, the temperature of the air inside the small mobile modular house decreased in proportion to the increase in the flow of water inside the cold water pipe.

Numerical Investigation on Experiment for Passive Containment Cooling System (피동 원자로건물 냉각계통 실험에 관한 수치적 연구)

  • Ha, Hui Un;Suh, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.

ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS

  • Kim, Ju Hyun;Yoo, Kwae Hwan;Na, Man Gyun;Kim, Jin Weon;Kim, Kyeong Suk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.225-234
    • /
    • 2014
  • Wall-thinned defects caused by accelerated corrosion due to fluid flow in the inner pipe appear in many structures of the secondary systems in nuclear power plants (NPPs) and are a major factor in degrading the integrity of pipes. Wall-thinned defects need to be managed not only when the NPP is under maintenance but also when the NPP is in normal operation. To this end, a test technique was developed in this study to detect such wall-thinned defects based on the temperature difference on the surface of a hot pipe using infrared (IR) thermography and a cooling device. Finite element analysis (FEA) was conducted to examine the tendency and experimental conditions for the cooling experiment. Based on the FEA results, the equipment was configured before the cooling experiment was conducted. The IR camera was then used to detect defects in the inner pipe of the pipe specimen that had artificially induced defects. The IR thermography developed in this study is expected to help resolve the issues related to the limitations of non-destructive inspection techniques that are currently conducted for NPP secondary systems and is expected to be very useful on the NPPs site.

The optimal array of various heat-generating heaters located on one wall of a vertical open top cavity (상부가 개방된 수직 캐비티내의 한쪽면에 배열된 다양한 발열조건을 갖는 발열체의 최적배열)

  • Riu, Kap-Jong;Choo, Hong-Lock;Choi, Byung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • An experimental investigation of two-dimensional steady natural convection cooling in a vertical open top cavity with conducting side walls of finite thickness is presented. The various heat-generating discrete heaters are located on one vertical wall of the cavity. When each heater dissipates different amount of power, the purpose of the work is to obtain the optimal array condition of the heaters. The four cases of non-uniform heating conditions are considered. The temperature fields in the cavity were visualized by the interferometer and local temperatures of the vertical wall were measured by thermocouples. The heaters were arranged in two configurations: flush-mounted on a vertical wall or protruding from the wall about 4.5 mm. The vertical wall was constructed out of copper or epoxy-resin sheet. Experiments have been conducted for air with constant Prandtl number(Pr=0.7), the aspect ratio of 4.6, 7.5, 9.5, power input in the range of 0.9 W ~ 4.2 W. For the enhancement of the cooling effectiveness, the upper and lower of vertical wall would give the better position for the heaters of higher heat flux.

A Study on Simulation for Decreasing Energy Demand According to Window-to-Wall Ratio and Installation Blind System in Building (블라인드 도입과 창면적비에 따른 표준건축물의 에너지 수요 저감에 대한 시뮬레이션 연구)

  • Kang, Suk-Min;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Building energy demands have highly risen in modern society; thus, It is necessary to reduce building energy demands especially commercial buildings adopting a curtain wall architecture. Curtain wall architectures have a high ratio of windows which is a vulnerable in heat insulations as cladding. In order to complement insulation performance of windows in these buildings, there are various methods adopted often such as installing blinds, wing wall and films. There are two suggestions of this paper. 1) WWR (Window-to-Wall Ratio) makes a impaction of energy demands in buildings. 2) Another one is an efficiency of blind systems which are installed in buildings in order to reduce cooling demands. It is also critical to make fundamental model for low-energy building construction by processing a lot of simulation As a result by this study, 1) an external blind system is more useful for reducing cooling energy demands rather than an internal blind system. 2) Buildings which have a large window require more amount of cooling demands. In case of WWR 45%, it needs more cooling energy rather than WWR 15% model's 3) Adopting blind system would reduce energy demands. WWR 45% model with external blind systems reduces about 4% of cooling energy demands compared to same model without any blind systems.4) it is necessary to study an efficiency of blind systems combined with renewable energy and it will be possible to reduce more energy demand in building significantly.

Thermal Analysis of a Film Cooling System with Normal Injection Holes Using Experimental Data

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee;Kim, Moon-Young
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • The present study investigated temperature and thermal stress distributions in a film cooling system with normal injection cooling flow. 3D-numerical simulations using the FEM commercial code ANSYS were conducted to calculate distributions of temperature and thermal stresses. In the simulations, the surface boundary conditions used the surface heat transfer coefficients and adiabatic wall temperature which were converted from the Sherwood numbers and impermeable wall effectiveness obtained from previous mass transfer experiments. As a result, the temperature gradients, in contrast to the adiabatic wall temperature, were generated by conduction between the hot and cold regions in the film cooling system. The gradient magnitudes were about 10~20K in the y-axis (spanwise) direction and about 50~60K in the x-axis (streamwise) direction. The high thermal stresses resulting from this temperature distribution appeared in the side regions of holes. These locations were similar to those of thermal cracks in actual gas turbines. Thus, this thermal analysis can apply to a thermal design of film cooling holes to prevent or reduce thermal stresses.

Experimental Study on the Radiative and Convective Cooling of Electronic Modules opposed to a Heated Vertical Plate (가열 수직 평판과 마주보는 전자모듈의 복사 및 대류 냉각에 대한 실험적 고찰)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The characteristics of natural convection heat transfer combined with radiation in a vertical parallel plates has been investigated experimentally. The vertical channel is consisted with a heated wall and three protruding heating sources attached on the opposite wall. The cooling of modules has been experimented with heating the wall as well as modules themselves at different aspects ratios and heating fluxes. As the location of module is higher, the temperature becomes higher, but the increasement is smaller. When the aspect ratio is lower than 26, its effect on the temperature is not significant rather than that of the radiation heat transfer. Furthermore, the correlation of Nusselt number with the Rayleigh number are attempted, but additional treatment is needed to accomodate the cases of heating module and/or opposite wall.

  • PDF