• Title/Summary/Keyword: Walking control

Search Result 1,032, Processing Time 0.032 seconds

Effect of Visual Feedback Training of Core Strength on Coordination, Balance and Walking Ability of Stroke Patients (코어강화를 동반한 시각적 되먹임 훈련이 뇌졸중 환자의 협응력, 균형과 보행능력에 미치는 영향)

  • Yoon, Sam-Won;Son, Ho-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • PURPOSE: This study compares the effects of HUBER rehabilitation and general rehabilitation treatment on the coordination, balance, and walking ability of stroke patients. METHODS: This study enrolled 38 randomized stroke patients, and data was collected for 6 weeks. All participants were randomly assigned to either the experimental group (n = 19) or control group (n = 19). The experimental group were administered Huber rehabilitation and general rehabilitation treatment. The control group was given only general rehabilitation treatment. Both treatments were conducted for 30 minutes during each training session, 3 training sessions per week, for 6 weeks. The coordination, balance, and walking ability were evaluated before and after the intervention, to compare the intergroup and intragroup changes. RESULTS: Change in the right LOS (limit of stability) (p < .001) and forward LOS (p < .02) following intervention were significantly greater in the experimental group than in the control group, but no significant group difference was observed between left LOS (p > .1) and backward LOS (p > .2). Alterations in coordination (p < .02) and TUG (p <. 05) were significantly greater after intervention in the experimental group than in the control group. CONCLUSION: These findings suggest that HUBER rehabilitation is effective in improving the coordination, balance, and walking ability in stroke patients. To strengthen and validate the results of this study, future studies related to HUBER rehabilitation are required.

Effects of the Gait Variable While Using Smartphones During Ramp Gait in Young Adults (젊은 성인에서 경사로 보행 시 스마트폰 사용이 보행 변수에 미치는 영향)

  • Yoon, Chae-Hyo;Kim, Bum-Su;Kang, Do-Young;Kim, Yeonseo;Lee, Myoung-Hee
    • PNF and Movement
    • /
    • v.19 no.2
    • /
    • pp.261-267
    • /
    • 2021
  • Purpose: This study aimed to investigate changes in gait variables depending on whether a task was performed using a smartphone while walking on a ramp. Methods: The participants of this study were 41 college students attending U University located in Gyeongju City, Gyeongsangbuk-do. In this study, gait variables were measured during ramp gait while using a smartphone to perform a task and during ramp gait without performing such tasks. In other words, four walking conditions were used: 1) walking up a ramp, 2) walking up a ramp while using a smartphone to perform a task, 3) walking down a ramp, and 4) walking down a ramp while using a smart phone to perform a task. Gait variables were measured using a gait analysis tool (Legsys; BioSensics, USA), and stride time, stride length, stride velocity, cadence, and double support were analyzed. The order of measurements was randomized to control for order effects due to repeated measurements. Results: The comparative analysis of gait variables according to the presence or absence of smartphone use during ramp gait showed that there were significant differences in stride time, stride length, and stride velocity during both ramp ascent and ramp descent (p < 0.05). In both ramp ascent and ramp descent, stride time increased when walking using a smartphone, compared to when walking without using a smartphone (p < 0.05). However, in both ramp ascent and ramp descent, stride length and stride velocity were decreased when walking using a smartphone compared to when walking without using a smartphone (p < 0.05). Conclusion: The study results showed that the use of a smartphone during walking can affect safety. Therefore, it is necessary to improve the awareness of risks associated with walking while using a smartphone, and further research needs to be conducted in various environments and with different ramps.

Development and Effects of Smartphone App-Based Walking Exercise Program for Taxi Drivers: Based on Bandura's Self Efficacy Theory (택시 운전자들을 위한 스마트폰 앱 기반 걷기운동 프로그램 개발 및 효과: Bandura의 자기효능이론을 중심으로)

  • Choi, Yun Ha;Chae, Min-Jeong
    • Journal of Korean Academy of Nursing
    • /
    • v.50 no.2
    • /
    • pp.242-254
    • /
    • 2020
  • Purpose: The purpose of this study was to examine the effects of smart-phone app-based walking exercise programs for taxi drivers on self-efficacy and outcome expectations for exercise, health-related quality of life, walking as an exercise, and physiological indexes. Methods: A nonequivalent control group with a pre-post-test design was used. The subjects were recruited in G metropolitan city. Subjects were assigned to the experimental (n=31) or control groups (n=30). The smart phone app-based walking exercise program consisted of educations via the app, twelve short message services, and one individual telephone counseling session, which was spread over 12 weeks. Results: Self-efficacy, outcome expectations, and health-related quality of life had significantly higher pre-post test differences in scores in the experimental group. Additionally, blood pressure, body mass index, and waist circumference had significantly decreased prepost-test difference levels in the experimental group. Walking as an exercise (which consisted of days walked, number of steps walked, and amount of time walked) had significantly increased in the experimental group after 7~12 weeks in the period following the intervention program rather than 1~6 weeks after the program. Conclusion: The smart phone app-based walking exercise program based on the self-efficacy theory demonstrates a significant effect on improving self-efficacy, outcome expectations physical activities, and health-related quality of life for taxi drivers. Therefore, it is recommended to actively use the program as a tool to promote self-efficacy, physical activities, and health behaviors in taxi drivers.

Development of a Bio-mimetic Quadruped Walking Robot with Waist Joint

  • Kim, Dong-Sik;Park, Se-Hoon;Kim, Kyung-Ho;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1530-1534
    • /
    • 2004
  • This paper presents a novel bio-mimetic quadruped walking robot with a waist joint, which connects the front and the rear parts of the body. The new robot, called ELIRO-1(Eating LIzard RObot version 1), can bend its body while the legs is transferred, thereby increasing the stride and speed of the robot. The waist-jointed walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. We design the mechanical structure of the robot, which is small and light to have high movability and high degree of human friendship. In this paper, we describe characteristics of the waist joint and leg mechanism as well as the analysis using ADAMS to select appropriate actuators. In addition, a hardware and software of the controller of ELIRO-1 are described.

  • PDF

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

Development of Autonomous Biped Walking Robot (자립형 이족 보행 로봇의 개발)

  • Kim, Y.S.;Oh, J.M.;Baik, C.Y.;Woo, J.J.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

A study on the motion trajectory planning and dynamic simulation of biped walking robot (이족 보행 로보트의 운동 궤적 계획 및 동적 시뮬레이션에 관한 연구)

  • 김창부;김웅태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.959-964
    • /
    • 1992
  • This study treats the method for kinematic modeling of the biped walking robot, for synthesizing various gait trajectories, and for calculating adequate values of the joint torque inside the stable region. To synthesize various and anthropomorphic walking easily, the gait trajectory is specified by a set of ten walking prameters, and the trunk motion equation is derived by the zero moment point and the gait trajectory. By distributing ground reaction force and moment reduced at the zero moment point to the both feet, the joint torque equation can be derived readily, and according to this equation, the joint torque to stable walking can be computed.

  • PDF

An Efficient Apeliodic Static Walking Algorithm for Quadrupecl Walking Machine (4족 보행 로봇의 효율적인 비주기 정적 보행 알고리즘)

  • 정경민;박윤창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.42-42
    • /
    • 2000
  • This paper concerns an efficient aperiodic static crab walking algorithm for quadruped walking machine in rough terrain. In this algorithm, the requirements for forward stability margin and backward stability margin could be given differently in order to consider the slope of terrain and disturbances resulting from moving velocity. To restrict the searing regions for motion variables, such as moving distances until a leg is lifted or is placed, the standard leg transferring sequence is decided to be that of wave gaits. standard support pattern is also proposed that enables the quadruped to continue forward motion using the standard leg transferring sequence without falling into deadlock.

  • PDF

Effects of a Plastic Ankle Foot Orthosis on Balance and Gait of Adult with Poststroke Hemiplegia: A Systematic Review of Forcusing on Korea's Thesis (플라스틱 단하지보조기 중재가 뇌졸중 후 편마비 성인의 보행과 균형에 미치는 효과: 국내 학위 논문을 중심으로 고찰)

  • Cho, Byeongmo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Purpose : The aim of this study was to investigate the effects of plastic ankle foot orthosis on adult post-stroke hemiplegic patients walking ability and balance. Method : The searched for the case controlled clinical trials about the effects of plastic ankle foot orthosis(pAFO) for walking ability and balance using quantitative gait analysis in adult post-stroke patients. Ten trials were selected from Riss4U databases published until June 2016 in Korea. The selected trials contained a control group with pre-test and post-test design, measured walking ability and balance as a dependent variable. Result : The selected ten trials involved a total of 180 patients. The walking speed, cadence, the portion of double limb supporting, stride length on affected side were improved by plastic ankle foot orthosis. Conclusion : The plastic ankle foot orthosis has some evidence to improve the walking ability and balance in post-stroke hemiplegic patients.

Development of Graphic interface for Biped walking robot (이족 보행 로봇의 그래픽 인터페이스 개발)

  • 김영식;전대원;최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.507-510
    • /
    • 2002
  • We developed a human-sized BWR(biped walking robot) named KUBIRI driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIRI was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize informations on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interfacer was developed based on the open inventor tool. Through the graphic interfacer, the control input of KUBIRI is performed.

  • PDF