• Title/Summary/Keyword: Walking assistance system

Search Result 37, Processing Time 0.024 seconds

A Walking Aid System for Blind People by Exploiting a Haptic Feedback Equipment (햅틱피드백 장치를 이용한 시각장애인 이동보조시스템)

  • Min, Seonghee;Jung, Yunjae;Oh, Yoosoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • In this paper we propose a walking aid system for blind people by exploiting a haptic feedback equipment. The proposed system is a form of haptic feedback cane which is composed of MCU, communication module, sensing module and actuator. The proposed system recognizes obstacles around the blind by using ultrasonic sensors in the sensing module. Moreover, the system generates feedback information about the detected obstacle and then notifies the information to the blind through the actuator. The blind can notice the direction of the detected obstacle with the haptic feedback equipment and vibration motor. Futhermore, the proposed system controls a nearby IoT(Internet of Things) system by utilizing push buttons through the ZigBee communication. Finally, the blind can easily decide the direction of the obstacle without interference of terrain feature by using the proposed system.

Muscle Stiffness based Intent Recognition Method for Controlling Wearable Robot (착용형 로봇을 제어하기 위한 근경도 기반의 의도 인식 방법)

  • Yuna Choi;Junsik Kim;Daehun Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • This paper recognizes the motion intention of the wearer using a muscle stiffness sensor and proposes a control system for a wearable robot based on this. The proposed system recognizes the onset time of the motion using sensor data, determines the assistance mode, and provides assistive torque to the hip flexion/extension motion of the wearer through the generated reference trajectory according to the determined mode. The onset time of motion was detected using the CUSUM algorithm from the muscle stiffness sensor, and by comparing the detection results of the onset time with the EMG sensor and IMU, it verified its applicability as an input device for recognizing the intention of the wearer before motion. In addition, the stability of the proposed method was confirmed by comparing the results detected according to the walking speed of two subjects (1 male and 1 female). Based on these results, the assistance mode (gait assistance mode and muscle strengthening mode) was determined based on the detection results of onset time, and a reference trajectory was generated through cubic spline interpolation according to the determined assistance mode. And, the practicality of the proposed system was also confirmed by applying it to an actual wearable robot.

Design and Control of a Wearable Robot for Stair-Climbing Assistance (계단 보행 근력 보조를 위한 착용형 로봇의 설계 및 제어)

  • Kim, Myeong-Ju;Kang, Byeong-Hyeon;Kim, Ok-Sik;Seo, Ki-Won;Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • This paper describes the development of a thigh wearable robot for power assistance during stair climbing. In the wearable robot developed in this study, high-power BLDC motors and high-capacity harmonic reduction gears are used to effectively assist the thigh muscle during stair climbing. In particular, normal ground and stair are distinguished accurately by using wireless smart shoes, and the stair climbing assistance is performed by activating the actuators at an appropriate time. Impedance of the hip joint was effectively reduced by performing friction compensation of the gears, and a wearing adjustment mechanism was designed to fit the robot to the thigh by conveniently modifying the width and tilting angle of the robot using set collars. Consequently, the performance of the developed thigh wearable robot was verified through stair climbing experiments with EMG measurement.

Organization of Sensor System and User's Intent Detection Algorithm for Rehabilitation Robot (보행보조 재활로봇의 센서 시스템 구성 및 사용자 의도 감지 알고리즘)

  • Jung, Jun-Young;Park, Hyun-Sub;Lee, Duk-Yeon;Jang, In-Hun;Lee, Dong-Wook;Lee, Ho-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.933-938
    • /
    • 2010
  • In this paper, we propose the organization of a sensor system and user's intent detection algorithm for walking assist rehabilitation robots. The main purpose of walking assist rehabilitation robots is assisting SCI patients to walk in normal environment. To use walking assist rehabilitation robot in normal environment, it is needed to consider various factors about user's safety and detection of user's intent and so on. For these purposes, we have analyzed the use case of rehabilitation robots and organized the system of sensors for walking assist rehabilitation robots and finally, we have developed the algorithm which is used to detect user's intent for those. We applied our proposal method in the rehabilitation robot, ROBIN, and verified their effectiveness by normal, not patient.

Development of an Intelligent Legged Walking Rehabilitation Robot (지능적 족형 보행 재활 보조 로봇의 개발)

  • Kim, Hyun;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.825-837
    • /
    • 2017
  • This paper describes a novel type of a walking rehabilitation robot that applies robot technologies to crutches used by patients with walking difficulties in the lower body. The primary features of the developed robot are divided into three parts. First, the developed robot is worn on the patient's chest, as opposed to the conventional elbow crutch that is attached to the forearm; hence, it can effectively disperse the patient's weight throughout the width of the chest, and eliminate the concentrated load at the elbow. Furthermore, it allows free arm motion during walking. Second, the developed robot can recognize the walking intention of the patient from the magnitude and direction of the ground reactive forces. This is done using three-axis force sensors attached to the feet of the robot. Third, the robot can perform a stair walking function, which can change vertical movement trajectories in order to step up and down a single stair according to the floor height. Consequently, we experimentally showed that the developed robot can effectively perform walking rehabilitation assistance by perceiving the walking intention of the patient. Moreover we quantitatively verified muscle power assistance by measuring the electromyography (EMG) signals of the muscles of the lower limb.

Gait Analysis System Using Infrared LED Landmarks (적외선 LED 랜드마크를 이용한 보행분석 시스템)

  • Nhut, Do-Tri;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.641-646
    • /
    • 2011
  • A low cost gait analysis system, which can measure stride length, walking speed, and ground reaction force, is proposed. A gait analysis system is used for medical evaluation of patients and rehabilitation assistance. Low cost cameras are attached to a shoe and movement of a shoe is estimated using infrared LED landmarks. Ground reaction force is measured from pressure sensors, which are installed inside a shoe. Through experiments, it is shown that the proposed system can be used to obtain stride length, walking speed, and ground reaction force.

Effects of an Elastic AFO on the Walking Patterns of Foot-drop Patients with Stroke

  • Hwang, Young-In
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • PURPOSE: Many patients with stroke have difficulties in walking with foot-drop. Various types of ankle-foot orthoses (AFOs) have been developed, but their weight needs to be reduced with the assistance of the ankle dorsiflexor. Therefore, an elastic AFO (E-AFO) was devised that not only improves the stability and flexibility of the ankle but also assists with ankle dorsiflexion while walking. This study examined the effects of an E-AFO, on the walking patterns of foot-drop patients with stroke. METHODS: Fourteen patients walked with and without an E-AFO, and the gait parameters were assessed using the GAITRite system. The spatiotemporal data on the gait patterns of stroke patients with foot-drop were compared using paired t-tests; the level of statistical significance was set to α<.05. RESULTS: No significant differences were observed in the velocity (p=.066) and affecte+d step length (p=.980), but the affected and less-affected stance (p=.022, p=.002) and swing time (p=.012, p=.005) were significantly different. The E-AFO produced a significant difference in the less-affected step length (p=.032). CONCLUSION: The E-AFO has a significant effect on the walking patterns of individuals with foot-drop and stroke. The E-AFO could be a useful assistive device for gait training in stroke patients.

Development of Intelligent Walking Assistive Robot Using Stereo Cameras (스테레오 카메라를 이용한 지능형 보행보조로봇의 개발)

  • Park, Min-Jong;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.837-848
    • /
    • 2014
  • This paper describes the development of a walking assistive robot for effective self-rehabilitation for elderly people facing an inconvenience in walking. The main features of the developed robot are enhanced safety and mobility using the baby walker and electric wheelchair mechanisms and an accurate walking tracking control algorithm using potentiometers and stereo cameras. Specifically, a pelvis supporter is designed to prevent the user from falling down and reduce the burden on their legs, and electric motors are used for easy locomotion with low effort. Next, the walking intention and direction of the user are automatically recognized by using potentiometers attached at the pelvis supporter so that the robot can track the user, and the rapidity and accuracy of the tracking were increased by applying a lower-body motion analysis algorithm with stereo cameras. Finally, the user-tracking performance of the developed robot was experimentally verified through stepwise walking assistance experiments.

Development of Walking Assistant Controller for Patients with Weakness in Cardiopulmonary System (심폐기능 허약자를 위한 보행보조장치 제어기 개발)

  • Kang, S.J.;Kim, G.S.;P, S.H.;Mun, M.S.;Sei, S.W.;Kim, J.K.;Ryu, J.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Case of patients with weakness in cardiopulmonary system, other ambulatory function is normal, but oxygen supply function is problem. So they need reduce energy consumption for gait by assistance system. In this study, we designed and developed walking assistant device which helps flexion and extension of hip joint for cardiopulmonary patients. There are two motors, each at the left and right side of pelvis, providing torque to the hip joint. The target angle of the flexion and extension in the hip joint is set according to the normal gait. As a result, reduction of energy consumption was 14.8% by gait assistive device.

Generation of Motor Velocity Profile for Walking-Assistance System Using Humanoid Robot Model (휴머노이드 로봇 모델을 이용한 보행재활 훈련장치의 견인모터 속도 파형 생성)

  • Choi, Young-Lim;Choi, Nak-Yoon;Park, Sang-Il;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.631-638
    • /
    • 2012
  • This work proposes a new method to generate velocity profile of a traction motor equipped in a rehabilitation system for knee joint patients through humanoid robot simulation. To this end, a three-dimensional full-body humanoid robot model is newly constructed, and natural human gait is simulated by applying to it reference joint angle trajectories already published. Linear velocity is derived from distance data calculated between the positions of a thigh band and its traction motor at every sampling instance, which is a novel idea of this paper. The projection rule is employed to kinematically describe the humanoid robot because of its high efficiency and accuracy, and measured joint trajectories are used in simulating human natural gait referring to Winter's book. The attained motor velocity profile for a certain position in human body will be applied to our walking-assistance system which is implemented with a treadmill system.