• Title/Summary/Keyword: Wakes

Search Result 161, Processing Time 0.021 seconds

Effects of Wake-Passing Orientation and Frequency on Unsteady Boundary Layer Transition on an Airfoil (주기적 통과 후류의 방향과 주파수가 익형 위 비정상 천이경계층에 미치는 영향)

  • Gang, Sin-Hyeong;Park, Tae-Chun;Jeon, U-Pyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.685-694
    • /
    • 2002
  • Effects of wake-passing orientation and frequency on the wake-induced boundary layer transition on a NACA0012 airfoil are investigated. The wakes are generated by rotating cylinders clockwise (CW) and counterclockwise (CCW) around the airfoil. Time- and phase-averaged streamwise mean velocities and turbulent fluctuations are measured with a single hot-wire probe. Wall skin frictions are estimated by the Computational Preston Tube Method (CPM). The pressure distribution on the airfoil is different according to the wake-passing orientation and frequency. Turbulent patches are generated in the laminar boundary layer due to the passing wake and the boundary layer becomes temporarily transitional. The transition process is significantly affected by the pressure gradient and the turbulent patches. For the receding wake, the turbulent patches propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. As the frequency increases, onset location of transition moles upstream and the boundary layer near the trailing edge becomes more transitional.

GAS-DYNAMICAL FRICTION OF A PERTURBER MOVING ON A CIRCULAR ORBIT

  • Kim, Hyo-Sun;Kim, Woong-Tae
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.179-182
    • /
    • 2007
  • Dynamical friction plays an important role in reducing angular momenta of objects in orbital motions. While astronomical objects usually follow curvilinear orbits, most previous studies focused on the linear-trajectory cases. Here, we present the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. The circular orbit causes the density wakes to bend along the orbit into asymmetric configurations, resulting in the drag forces in both opposite (azimuthal) and lateral (radial) directions to the perturber motion, although the latter does not contribute to the orbital decay much. For a subsonic perturber, the bending of a wake is only modest and the resulting drag force in the opposite direction is remarkably similar to the linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, creating a high-density trailing tail. Despite the dramatic changes in the wake morphologies, the azimuthal drag force is in surprisingly good agreement with the formulae of Ostriker for the linear-trajectory cases, provided $V_pt=2R_p,\;where\;V_p\;and\;R_p$ are the velocity and orbital radius of the perturber, respectively.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated fins (IV) - Comparison of Vortex Formation Regions - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (IV) - 와형성영역의 유동비교 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.357-366
    • /
    • 2003
  • An experimental study is performed to investigate characteristics of near of wakes of circular cylinders with serrated fins using a hot-wire anemometer for various freestream velocities. The main focus of this paper is to investigate a reason why a vortex formation length is increased suddenly. Velocity of the fluid which flow through fins decreases as fin's height and freestream velocity increases and fin pitch decreases, and a thickness of boundary layer increases. The finned tube has a lower velocity gradient when the higher boundary layer grows. This velocity gradient on finned tube makes a weak shear force in the wake and moves to downstream in a state of lower momentum transfer between the freestream and the wake. The phenomenon makes a vortex formation length increased suddenly. The fluctuations of the velocity distributions on the finned tube and (equation omitted) = 1.0 contour line in the vortex formation region decreases when the fin height increases and the pitch decreases.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.

Measurement of Turbulent Intensity Distributions of a Cylinder Wake

  • Doh, Deog Hee;Cho, Gyeong Rae;Moon, Kyeong Rok;Cho, Yong Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Turbulence properties of a cylinder wake (d=10 mm) have been investigated with a new volume PTV algorithm. The measurement system consists of two-high-cameras(1 $k{\times}1$ k), a Nd-Yag laser and a host computer. A fitness function representing three-dimensional coherency has been adopted to sort out spurious vectors. A hybrid fitness function representing the relations between the fitness and the three-dimensional shortest distances constructed by the two collinears of the two cameras has been also adopted. The constructed algorithm has been employed for the measurements of the cylinder wakes. The Reynolds numbers tested in this paper are 360, 540, 720, 900, 1080 and 1260. More than 10,000 instantaneous 3D vectors have been obtained by the constructed system. The volumetric distributions of the turbulence intensities (for u', v', w') indicate that clearly different patterns for all Reynolds numbers and imply that a regular pattern (like a similarity rule) for the turbulent properties exists.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles (틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

Visualization and Computational Analysis for Flow around Rotating Blades (회전하는 블레이드 주위의 유동가시화 및 전산유동해석)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • The optimal design is needed for the blade geometry of the quad-rotor blades which is mainly used for Unmanned Aerial Vehicle. To do this, it is important to analyze the wakes under the blades. In the present study, the flow around the rotating blades was analyzed using PIV(Particle Image Velocimetry) and CFD(Computational Fluid Dynamics). The maximum axial velocity was measured at about 60% position toward the radial direction of the blade. The positions of vorticities in the test section obtained by PIV and CFD were turned out to be almost alike. The values in the difference of pressure coefficients at the upper and the lower blades were increased depending on the radial direction. Then, the values were decreased at the blade tip. The data of the flow analysis in the present study are expected to be served as the design of blades and ducts for the thrust improvement in the future.

Prediction for the Performance and Wakes of a Counter-Rotating Wind Turbine Using the Vortex Lattice Method (와류격자기법을 이용한 Counter-Rotating 풍력 발전기의 성능 및 후류 해석 연구)

  • Lee, Seungmin;Son, Eunkuk;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • A Counter-rotating wind turbine is one of the new concepts that are proposed to increase the performance of a wind turbine. It has two rotors rotating in the same axis, and it is known that its power coefficient can reach to 0.64 in the ideal case. While the BEMT is widely used to analyze the aerodynamic performance of wind turbines, the analysis of the counter-rotating wind turbine by using it is limited due to the aerodynamic interaction between the two rotors. In this study, the vortex lattice method is used to consider the effect of the front rotor on the rear rotor of the counter-rotating wind turbine and calculate the aerodynamic performance of it. The power and thrust sharing in the two rotors of the counter-rotating wind turbine are predicted and the total power and thrust are compared with that of a single rotor. Moreover, the wake convection and expansion rate is also compared with that of a single rotor.

  • PDF

Localization of Multiple Robots in a Wide Area (광역에서의 다중로봇 위치인식 기법)

  • Yang, Tae-Kyung;Choi, Won-Yeon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The multiple block localization method in a wide area for multiple robots using iGS is proposed in this paper. The iGS is developed for the indoor global localization using ultrasonic and RF sensors. To measure the distance between a mobile robot and a beacon, the tag on the mobile robot wakes up one beacon to send out the ultrasonic signal and measures the traveling time from the beacon to the mobile robot. As the number of robots is increased, the sampling time of localization also becomes longer. Note that only one robot can localize its own position calling beacons one by one during each of the sampling interval. This is a severe constraint for the localization of multiple robots in a wide area. This paper proposes an efficient localization algorithm for the multiple robots in a wide area which can be divided into multiple blocks. For a given block, a master beacon is designated to synchronize robots. By the access of the synchronization signal, each beacon in the selected group sends out an ultrasonic signal. When the robots in the block receive the ultrasonic signal, they can calculate their own locations based on the distances to the beacons, which are obtained by the multiplication of flight time and velocity of the ultrasonic signal. The efficiency of the algorithm is verified through the real experiments.