• Title/Summary/Keyword: Wake distribution

Search Result 214, Processing Time 0.029 seconds

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

A Characteristic Study of Wake Distribution for Container Carrier (컨테이너선의 반류분포 특성 연구)

  • Park Sung-Woo;Park No-Joon;Yu Yong-Wan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.51-56
    • /
    • 2005
  • In this paper, a correlation analysis of wake distribution between model test and CFD was described. CFD calculation was performed by 'WAVIS' which is utilized in hullform development. By using the correlation between model test and CFD, we have estimated M/T wake distribution To control M/T and CFD wake distribution effectively. we have developed the program that it is possible to export to TECPLOT and visualize wake distribution.

  • PDF

A Study on Prediction of Wake Distribution by Neuro-Fuzzy System (뉴로퍼지시스템에 의한 반류분포 추정에 관한 연구)

  • Shin, Sung-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Wake distribution data of stem flow fields have been accumulated systematically by model tests. If the correlation between geometrical hull information and wake distribution is grasped through the accumulated data, this correlation can be helpful to designing similar ships. In this paper, Neuro-Fuzzy system that is emerging as a new knowledge over a wide range of fields nowadays is tried to estimate the wake distribution on the propeller plan. Neuro-Fuzzy system is well known as one of prospective and representative analysis method for prediction, classification, diagnosis of real complicated world problem, and it is widely applied even in the engineering fields. For this study three-dimensional stern hull forms and nominal wake values from a model test ate structured as processing elements of input and output layer, respectively. The proposed method is proved as an useful technique in ship design by comparing measured wake distribution with predicted wake distribution.

A Study on the Ship Wake Model under the Ocean Environment (해상 환경을 고려한 수상함 항적 모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Kim, Woo-Shik;Park, Joung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.22-30
    • /
    • 2021
  • The ship wake generated by rotation of the propeller yields changes of characteristics of sound wave such as attenuation and scattering. To develope a battle field environment simulator for military purposes, it is very important to understand acoustical properties of ship wake. Existing research results have limitations in direct application because they performed under simple conditions or model ships were applied. In this study, we developed a ship wake generation model based on the ship's geometric wake distribution theory. The model can provide spatial distribution and void fraction with various marine environments as well as ship size. Through the developed model, geometric distribution features of ship wake according to the ship's maneuvering conditions were successfully simulated. In addition, changes of the bubble void fraction with time at any location within the battle field environment were identified. Therefore, the developed model is expected to be used in the development of a simulator to measure the acoustic characteristics of the ship wake.

Visualization of Unstable Vortical Structure in a Propeller Wake Affected by Simulated Hull Wake (재현된 반류의 영향을 받는 프로펠러 후류 내 불안정한 날개끝 보오텍스 구조에 대한 정량적 가시화)

  • Kim, Kyung-Youl;Paik, Bu-Geun;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.620-630
    • /
    • 2008
  • The characteristics of complicated propeller wake influenced by hull wake are investigated by using a two-frame PIV (Particle Image Velocimetry) technique. As the propeller is significantly affected by the hull wake in a real marine vessel, the measurements of propeller wake under the hull wake would be certainly necessary for more reliable validation and the prediction of numerical simulation with wake modeling. Velocity field measurements have been conducted in a medium-size cavitation tunnel with a hull wake. Generally, the hull wake generated by the boundary layer of ship's hull produces the different loading distribution on the propeller blade in both upper and lower propeller planes. The difference of the propeller wake behaviors caused by the hull wake is discussed in terms of axial velocity, vorticity and turbulence kinetic energy distribution in the present study.

Computation of Turbulent Flows around Full-form Ships

  • Van Suak-Ho;Kim Hyoung-Tae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.118-125
    • /
    • 1995
  • This paper presents the result of a computational study on the wake characteristics of two tanker models. i.e HSVA and DYNE hull forms. The focus of the study is on the distributions of axial. radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull forms. the incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are numerically solved by the use of a second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial. radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution for the both hull forms.

  • PDF

Analytical Solution of Non-dimensional Turbulent Kinetic Energy Distribution Function in the Turbulnet Wake behind a Submarine (잠수함 난류항적 기술을 위한 무차원 난류 에너지 분포함수 B(ξ) 예측)

  • Lee, YongChol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • To describe turbulent wake behind a submarine, it is very important to know turbulent kinetic energy distributions in the wake. To get the distribution is to solve the turbulent kinetic energy equation, and to solve the equation, it is needed both information of ${\lambda}$ and ${\sigma}$ which define physical characteristics of the wake. This paper gives analytical solution of the equation, which is driven from $8^{th}$ order polynomial fitting, as a function of given ${\lambda}$, even though there is no information of ${\sigma}$. In comparison between numerical solution(i.e. exact solution) and analytical solution, the relative errors between them are less than to 5% in the range of 0 < ${\xi}$ < 0.95 in most given ${\lambda}$.

A Computational Study on Turbulent Flow Characteristics around Full-form Tankers

  • Van, Suak-Ho;Kim, Hyoung-Tae
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.1-13
    • /
    • 1996
  • This paper presents the result of a computational study on the wake characteristics of two tanker models, i.e. HSVA and Mystery hull forms. The focus of the study is on the distributions of axial, radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull farms, the incompressible Reynolds-Averaged Wavier-Stokes(RANS) equations are numerically solved by the second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial, radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution fur the both hull forms.

  • PDF

Design Optimization of Wake Equalizing Duct Using CFD (CFD를 이용한 Wake Equalizing Duct의 최적설계)

  • Lee, Ho-Sung;Kim, Dong-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, wake equalizing duct (WED) form optimization was carried out using computational fluid dynamics (CFD) techniques. A WED is a ring-shaped flow vane with a foil-type cross-section fitted to a hull in front of the upper propeller area. The main advantage of a WED is the power savings resulting from the uniformity of the velocity distribution on the propeller plane, a reduction in the flow separation at the aft-body, and lift generation with a forward force component on the foil section. This paper intends to evaluate these functions and find an optimized WED form for minimizing the viscous resistance and equalizing the wake distribution. In the optimization process, the study uses four WED parameters: the angle of the section, longitudinal location, and angles of the axes for the half rings against the longitudinal and transverse planes of the ship. KRISO 300K VLCC2 (KVLCC2) is chosen as an example ship to demonstrate the WED optimization. The optimization procedure uses genetic algorithms (GAs), a gradient-based optimizer for the refinement of the solution, and Non-dominated Sorting GA-II(NSGA-II) for Multiobjective Optimization. The results show that the optimized WED can reduce the viscous resistance at the expense of the uniformity of the wake distribution.

Wake Flow Characteristics around the Side Mirror of a Passenger Car (승용차 외장측면거울 주위의 유동 특성)

  • Han, Yong-Oun;Kim, Jung-Hyun;Hwang, In-Ho;Seo, Jung-Bok;Lim, Byung-Hoon;Jung, Ui-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2573-2578
    • /
    • 2007
  • In order to investigate the vortex body frame interaction around the side mirror of a passenger car, velocity vector fields in the wake, pressure distributions and boundary layer flows over both the mirror surface and the mirror housing, have been measured by several experimental tools. It was resulted that only within an half downstream distance of the mirror span there appears the recirculation zone, and also found that vortex trail towards to the driver side window between A and B pillars, making the acoustic noise and vibration. Wake vortex rolls up after this recirculating zone and makes the trail of the vortex center towards the driver side window, which was also confirmed by measurements of wake velocity vectors in the vertical sections of the trail and visualization over the side mirror surfaces as well. It was also observed that total pressure distribution over the mirror surface has the minimum peak near the lower tip region which can be considered as the origin of the vortex center. It can be concluded that the geometrical modification of the lower tip and the upper root area of the mirror housing is the key to control the wake vortex.

  • PDF