• Title/Summary/Keyword: Wafer Processing

Search Result 233, Processing Time 0.029 seconds

Wafer Edge Defect Inspection Device R&D (웨이퍼 엣지 결함(Chip & Crack) 인식 장비 R&D)

  • Kim, Seong-Jin;Kwon, Hyeok-Min;O, Min-Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.881-883
    • /
    • 2022
  • 고객사에 납품하는 웨이퍼의 안정적인 공급을 위한 웨이퍼 엣지의 결함 검출 장비다. 본 연구에서는 OpenCV와 임베디드 시스템, 머신러닝, 전자 회로 그리고 센서/카메라 기술을 핵심 기술로 R&D 한다. 고객사에서 불량 웨이퍼 발생에 대응하기 위한 장비의 데이터를 생산하여 고객과의 신뢰도 향상 및 유지를 할 수 있다. 그리고 결함이 특정 공정 지점에서 발생하는지 탐색할 수 있다.

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

Ferroelectric Properties of $(Pb_{0.9}Ca_{0.1})TiO_3$ Thin Films by Sol-Gel Processing (졸-겔법에 의한 $(Pb_{0.9}Ca_{0.1})TiO_3$ 박막의 강유전 특성)

  • Kim, Haeng-Koo;Chung, Su-Tae;Lee, Jong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.138-145
    • /
    • 1998
  • The $(Pb_{0.9}Ca_{0.1})TiO_3$[PCT] thin films have been deposited by sol-gel processing on Si-wafer and ITO glass substrates. The creak-free films have been obtained by rapid thermal annealing at $700^{\circ}C$ for 10 minute and characterized by XRD, SEM and electrical measurements. Their tetragonality c/a was 1.041 and grain size was $0.15{\sim}0.2{\mu}m$. When the electrode system of sample was Au/PCT/ITO(MFM) and film thickness was $0.8{\mu}m$, dielectric constant, dielectric loss and Curie temperature were about 149, 0.085 and $449^{\circ}C$ at 10kHz, respectively. Spontaneous polarization $P_s$, remnant polarization $P_r$ and coercive field $E_c$ were about $5.29{\mu}C/cm^2$, $4.15{\mu}C/cm^2$ and 82kV/cm calculated by hysteresis loop.

  • PDF

Off-Site Distortion and Color Compensation of Underwater Archaeological Images Photographed in the Very Turbid Yellow Sea

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • Underwater photographing and image recording are essential for pre-excavation survey and during excavation in underwater archaeology. Unlike photographing on land, all underwater images suffer various quality degradations such as shape distortions, color shift, blur, low contrast, high noise levels and so on. Outcome is very often heavily photographing equipment and photographer dependent. Excavation schedule, weather conditions, and water conditions can put burdens on divers. Usable images are very limited compared to the efforts. In underwater archaeological study in very turbid water such as in the Yellow Sea (between mainland China and the Korean peninsula), underwater photographing is very challenging. In this study, off-site image distortion and color compensation techniques using an image processing/analysis software is investigated as an alternative image quality enhancement method. As sample images, photographs taken during the excavation of 800-year-old Taean Mado Shipwrecks in the Yellow Sea in 2008-2010 were mainly used. Significant enhancement in distortion and color compensation of archived images were obtained by simple post image processing using image processing/analysis software (PicMan) customized for given view ports, lenses and cameras with and without optical axis offsets. Post image processing is found to be very effective in distortion and color compensation of both recent and archived images from various photographing equipment models and configurations. Merits and demerit of in-situ, distortion and color compensated photographing with sophisticated equipment and conventional photographing equipment, which requires post image processing, are compared.

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

A Study on Slurry Isolation Through Chemical Processing, with Comparative Analysis and Validation (화학적 처리를 적용한 Slurry 분리 및 비교분석 검증 연구)

  • Na, Wonshik
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • The use of slurry with a mix of abrasives and coolant for making Wire Saw in the photovoltaic industry has sharply increased with the semiconductor wafer. In this paper, the slurry was isolated, purified and dried by microwave drying method with high-purity silicon carbide powder obtained through chemical processing. Dried slurry bulk was first pulverized and chemical treatment was applied to produce powder. The produced slurry powder was then analyzed by going through the following analysis; thermal analysis, particle size analyses: SEM shots, elemental analysis, XRF and XRD. The results of this study found the recovery rate of the power obtained though the chemical processing to be higher than the one obtained from mineral processing. The results anticipate infrastructure building and active responses to increasingly stronger domestic and international environmental regulations through the integration and recycling of large amounts of slurry in the photovoltaic industry.

Bang-Bang plus PID Temperature Control Scheme for Rapid Thermal Processing (급속 열처리 공정을 위한 Bang-Bang/PID 온도제어기법)

  • Song, Tae-Seung;Lyu, Joon
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.109-117
    • /
    • 1999
  • This paper describes the quick and precise control of the wafer temperature essential in rapid thermal processing(RTP). The bang-bang plus PID controller structure is introduced to satisfy rapid ramp-up rate and reduce overshoot and steady state error. The controller employs the PID action when the magnitude of the error between reference signal and the output temperature signal is smaller than some prescribed value. To find PID gains, the plant(autoregressive) model is first identified and Kappa-Tau tuning rule is used. The developed controller is applied to experimental RTP apparatus, and performances are evaluated.

  • PDF

Suppression of Macrosteps Formation on SiC Wafer Using an Oxide Layer (산화막을 이용한 SiC 기판의 macrostep 형성 억제)

  • Bahng, Wook;Kim, Nam-Kyun;Kim, Sang-Cheol;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.539-542
    • /
    • 2001
  • In SiC semiconductor device processing, it needs high temperature anneal for activation of ion implanted dopants. The macrosteps, 7~8nm in height, are formed on the surface of SiC substrates during activation anneal. We have investigated the effect of thermally-grown SiO$_2$layer on the suppression of macrostep formation during high temperature anneal. The cap oxide layer was found to be efficient for suppression of macrostep formation even though the annealing temperature is as high as the melting point of SiO$_2$. The thin cap oxide layer (10nm) was evaporated during anneal then the macrosteps were formed on SiC substrate. On the other hand the thicker cap oxide layer (50nm) remains until the anneal process ends. In that case, the surface was smoother and the macrosteps were rarely formed. The thermally-grown oxide layer is found to be a good material for the suppression of macrostep formation because of its feasibility of growing and processing. Moreover, we can choose a proper oxide thickness considering the evaporate rate of SiO$_2$at the given temperature.

  • PDF

Structural and Dielectric Properties of $PbTiO_3$ Ferroelectric Thin Film Prepared by Sol-Gel Processing (Sol-Gel법으로 제조된 $PbTiO_3$ 강유전 박막의 구조적, 유전적 특성)

  • 김준한;백동수;박창엽
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.695-700
    • /
    • 1993
  • In this study, we prepared Pb-Ti stock solution by sol-gel processing and deposited PbTiO3 thin film on a Pt coated SiO2/Si wafer by spin coating using the stock solution. We used lead acetate trihydrate and titanium isopropoxide. The stock solution was partially hydrolized and finally a 0.25M coating solution was prepared. We achieved spin coating at 4000rpm for 30 seconds and heated the thin film at 375$^{\circ}C$ for 5 minutes and at $600^{\circ}C$ for 5 minutes successively, first and second heating state. And the thin film was finally sintered at 90$0^{\circ}C$ for 1 hour in the air. The upper electrode of the thin film was made by gold sputtering and was cricle shape with radius 0.4mm. Measured dielectric constant, dissipation factor and phase transition temperature(Cuire Temp.) were about 275, 0.02 and 521$^{\circ}C$ respectively. To observe ferroelectric characteristics we calculated Pr(remnant polarization) and Ec(coercive field) byhysteresis curve. Ec was 72kV/cm and Pr was 11.46$\mu$C/$\textrm{cm}^2$.

  • PDF

A Study of Material Removal Characteristics by Friction Monitoring System of Sapphire Wafer in Single Side DMP (사파이어 웨이퍼 DMP에서 마찰력 모니터링을 통한 재료 제거 특성에 관한 연구)

  • Jo, Wonseok;Lee, Sangjik;Kim, Hyoungjae;Lee, Taekyung;Lee, Seongbeom
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Sapphire has a high hardness and strength and chemical stability as a superior material. It is used mainly as a material for a semiconductor as well as LED. Recently, the cover glass industry used by a sapphire is getting a lot of attention. The sapphire substrate is manufactured through ingot sawing, lapping, diamond mechanical polishing (DMP) and chemical mechanical polishing (CMP) process. DMP is an important process to ensure the surface quality of several nm for CMP process as well as to determine the final form accuracy of the substrate. In DMP process, the material removal is achieved by using the mechanical energy of the relative motion to each other in the state that the diamond slurry is disposed between the sapphire substrate and the polishing platen. The polishing platen is one of the most important factors that determine the material removal characteristics in DMP. Especially, it is known that the geometric characteristics of the polishing platen affects the material removal amount and its distribution. This paper investigated the material removal characteristics and the effects of the polishing platen groove in sapphire DMP. The experiments were preliminarily carried out to evaluate the sapphire material removal characteristics according to process parameters such as pressure, relative velocity and so on. In the experiment, the monitoring apparatus was applied to analyze process phenomena in accordance with the processing conditions. From the experimental results, the correlation was analyzed among process parameters, polishing phenomena and the material removal characteristics. The material removal equation based on phenomenological factors could be derived. And the experiment was followed to investigate the effects of platen groove on material removal characteristics.