• Title/Summary/Keyword: Wafer Pre-Aligner

Search Result 5, Processing Time 0.034 seconds

A Wafer Pre-Alignment System Using One Image of a Whole Wafer (하나의 웨이퍼 전체 영상을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.47-51
    • /
    • 2010
  • This paper presents a wafer pre-alignment system which is improved using the image of the entire wafer area. In the previous method, image acquisition for wafer takes about 80% of total pre-alignment time. The proposed system uses only one image of entire wafer area via a high-resolution CMOS camera, and so image acquisition accounts for nearly 1% of total process time. The larger FOV(field of view) to use the image of the entire wafer area worsen camera lens distortion. A camera calibration using high order polynomials is used for accurate lens distortion correction. And template matching is used to find a correct notch's position. The performance of the proposed system was demonstrated by experiments of wafer center alignment and notch alignment.

A Wafer Pre-Alignment System Using a High-Order Polynomial Transformation Based Camera Calibration (고차 다항식 변환 기반 카메라 캘리브레이션을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Lee, Nam-Hee;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • Wafer Pre-Alignment is to find the center and the orientation of a wafer and to move the wafer to the desired position and orientation. In this paper, an area camera based pre-aligning method is presented that captures 8 wafer images regularly during 360 degrees rotation. From the images, wafer edge positions are extracted and used to estimate the wafer's center and orientation using least squares circle fitting. These data are utilized for the proper alignment of the wafer. For accurate alignments, camera calibration methods using high order polynomials are used for converting pixel coordinates into real-world coordinates. A complete pre-alignment system was constructed using mechanical and optical components and tested. Experimental results show that alignment of wafer center and orientation can be done with the standard deviation of 0.002 mm and 0.028 degree, respectively.

Pre-Alignment Using the Least Square Circle Fitting (Least Square Circle Fitting을 이용한 Pre-Alignment)

  • Lee, Nam-Hee;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.410-413
    • /
    • 2009
  • Wafer pre-alignment is to find the center and the orientation of a wafer and to move the wafer to the desired position and orientation. In this paper, an area camera based pre-aligning method is presented that captures 8 wafer images regularly during 360 degrees rotation. From the images, wafer edge positions are extracted and used to estimate the wafer's center and orientation using least square circle fitting. These information are utilized for the proper alignment of the wafer.

  • PDF

Integration and Control Technology of GaAs Bonding System using DeviceNet (DeviceNet 을 채용한 GaAs 본딩 시스템의 통합 제어기술)

  • 송준엽;이승우;임선종;김원경;배영걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1376-1379
    • /
    • 2004
  • This study is designed integration and control system of GaAs bonding system consisted of multi-processing using DeviceNet and GEM-Protocol. Developing bonding system is composed of resin coating, pre-baking pre-aligner, bonding, material handler(flip robot), and wafer cassette, etc. This system has process-fluent of each a process and share information using GEM-protocol. This study devised virtual bonding simulator to control and to monitor bonding system efficiently. Also we can verify optimizing of system previously through a virtual bonding simulator.

  • PDF

Direct Bonding of SillSiO2/Si3N4llSi Wafer Fairs with a Fast Linear Annealing (선형가열기를 이용한 SillSiO2/Si3N4llSi 이종기판쌍의 직접접합)

  • 이상현;이상돈;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • Direct bonded SOI wafer pairs with $Si ll SiO_2/Si_3N_4 ll Si$ the heterogeneous insulating layers of SiO$_2$-Si$_3$N$_4$are able to apply to the micropumps and MEMS applications. Direct bonding should be executed at low temperature to avoid the warpage of the wafer pairs and inter-diffusion of materials at the interface. 10 cm diameter 2000 ${\AA}-SiO_2/Si(100}$ and 560 $\AA$- ${\AA}-Si_3N_4/Si(100}$ wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were pre- mated with facing the mirror planes by a specially designed aligner in class-100 clean room immediately. We employed a heat treatment equipment so called fast linear annealing(FLA) with a halogen lamp to enhance the bonding of pre mated wafers We kept the scan velocity of 0.08 mm/sec, which implied bonding process time of 125 sec/wafer pairs, by varying the heat input at the range of 320~550 W. We measured the bonding area by using the infrared camera and the bonding strength by the razor blade clack opening method, respective1y. It was confirmed that the bonding area was between 80% and to 95% as FLA heat input increased. The bonding strength became the equal of $1000^{\circ}C$ heat treated $Si ll SiO_2/Si_3N_4 ll Si$ pair by an electric furnace. Bonding strength increased to 2500 mJ/$\textrm{m}^2$as heat input increased, which is identical value of annealing at $1000^{\circ}C$-2 hr with an electric furnace. Our results implies that we obtained the enough bonding strength using the FLA, in less process time of 125 seconds and at lowed annealing temperature of $400^{\circ}C$, comparing with the conventional electric furnace annealing.