• Title/Summary/Keyword: WTW

Search Result 4, Processing Time 0.022 seconds

Comparing Labor Force Attachment and Human Capital Development Models in America's Welfare to Work Policies (미국의 노동중심적 복지개혁에서의 '노동시장연결' 모델과 '인간자본개발' 모델 비교)

  • Kim, Jong-Il
    • Korean Journal of Social Welfare
    • /
    • v.41
    • /
    • pp.119-146
    • /
    • 2000
  • The goals and strategies of welfare-to-work (WTW) policies have been sources of contentious political debate. In the United States, despite 20 years of welfare reform, there remain important differences of opinion regarding how best to design and deliver WTW programs. The proliferation of state and local WTW experiments has led to the identification of two ideal-types of WTW programs: the Labor Force Attachment and Human Capital Development models. Most of the recent policy debate about WTW in America has focused on the relative merits and performance of LFA and HCD. While the Primary goal of the LFA model is for welfare recipients to achieve a rapid transition into work, the HCD model seeks to improve the long-term employability of welfare dependents through education and skill development. LFA policies tend to be strongly outcome-oriented and generally can yield quick results. Their "any job is a good job" philosophy has proved attractive to policy-makers who are anxious to see concrete results in a short-term period. In contrast, the HCD policies do not simply dump welfare dependents at the bottom of the labor market, but aim to secure relatively stable and well-paid jobs. However, these strengths are offset by several practical weaknesses including high unit costs and long-term investment in human capital. In recent years, LFA policies have been increasingly favored by both policy officials and politicians in the United States. The introduction of Temporaray Assistance to Needy Families of 1996 has been accelerating the trend. What is going to happen to welfare recipients? This simple shift to the LFA model, however, will only see an alarming increase of working poor in a near future.

  • PDF

Manufacturing yield challenges for wafer-to-wafer integration (Wafer-to-Wafer Integration을 위한 생산수율 챌린지에 대한 연구)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Wafer-to-Wafer (W2W) integration technology is an emerging technology promising many benefits, such as reduced size, improved performance, reduced power, lower cost, and divergent integration. As the maturity of W2W technology progresses, new applications will become more viable. However, at present the cost for W2W integration is still very high and both manufacturing yield and reliability issues have not been resolved yet for high volume manufacturing (HVM). Especially for WTW integration resolving compound yield issue can be a key factor for HVM. To have the full benefits of WTW integration technology more than simple wafer stacking technologies are necessary. In this paper, the manufacturing yield for W2W integration is described and the challenges of WTW integration will be discussed.

Analysis of Medium Voltage Power-Line Channel Characteristics Considering the Skin Effect (표피효과를 고려한 중전압 전력선 채널특성 분석)

  • 김선효;이원태;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.731-738
    • /
    • 2002
  • In this paper, we analyzed a medium voltage power line characteristics considering the skin effect for high speed data transmission. Medium power-line characteristics impedance was obtained by the S-parameter method which is used in high frequency band. Power line channel characteristics was measured using it designed coupler, it is a wide band coupler between medium powe-line and measurement system. Attenuation characteristics along the frequency was decreased linearly when skin effect was considered but attenuation characteristics along the frequency was decreased linearly when skin effect was not considered. Impedance was showed lower and lower in proportional to frequency, and variation was decreased in proportional to frequency.

Well-to-Wheel Greenhouse Gas Emissions Analysis of Hydrogen Fuel Cell Vehicle - Hydrogen Produced by Naphtha Cracking (나프타 기반 수소 연료전지 자동차의 전과정 온실가스 발생량 분석)

  • Kim, Myoungsoo;Yoo, Eunji;Song, Han Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • The Fuel Cell Electric Vehicle(FCEV) is recently evolving into a new trend in the automobile industry due to its relatively higher efficiency and zero greenhouse gas(GHG) emission in the tailpipe, as compared to that of the conventional internal combustion engine vehicles. However, it is important to analyze the whole process of the hydrogen's life cycle(from extraction of feedstock to vehicle operation) in order to evaluate the environmental impact of introducing FCEV upon recognizing that the hydrogen fuel, which is used in the fuel cell stack, is not directly available from nature, but instead, it should be produced from naturally available resources. Among the various hydrogen production methods, ${\sim}54.1%^{8)}$ of marketed hydrogen in Korea is produced from naphtha cracking process in the petrochemical industry. Therefore, in this study, we performed a well-to-wheels(WTW) analysis on the hydrogen fuel cycle for the FCEV application by using the GREET program from the US Argonne National Laboratory with Korean specific data. As a result, the well-to-tank and well-to-wheel GHG emissions of the FCEV are calculated as 45,638-51,472 g $CO_2eq/GJ$ and 65.0-73.4 g $CO_2eq/km$, respectively