• Title/Summary/Keyword: WSN(Wireless sensor network)

Search Result 645, Processing Time 0.029 seconds

IEEE 802.15.4 Ad-Hoc Wireless Sensor Network Routing Method Applying EtherCAT Communication Method (EtherCAT 통신방식을 응용한 IEEE 802.15.4 Ad-Hoc 무선 센서 네트워크 라우팅 방식)

  • Park, Jeong-Hyeon;Seo, Chang-Jun
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.289-301
    • /
    • 2018
  • IIoT, the IoT technology applied to the industrial field, is being used as a monitoring technology for increasing in production rate and safety of workers. However, monitoring through the construction of IIoT network using Ethernet and RS485 in production lines where dozens to hundreds of machine tools are manufacturing components, have difficulties of infrastructure cost and network flexibility and fluidity. Therefore, in this paper, using IEEE 802.15.4 standard WSN device to construct a Ad-Hoc WSN in the production line. In addition, the transmission period and order of the sensor nodes are set by applying the EtherCAT communication method in which the payload frames are shared by all the sensor nodes. From this, we have overcome the problem of reliability decline and real-time issue due to the packet collision of wireless network and confirmed that it is a wireless network routing method that can be used in the actual industrial field.

Positioning of the Base Station at Wireless Sensor Network (무선 센서 네트워크에서 기지국의 위치선정)

  • Cho, Do-Hyeoun;Lee, Jong-Young;Lee, Sang-Hun;Choi, Jin-Tak
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1189-1190
    • /
    • 2008
  • Wireless sensor networks (WSN) have attracted much attention in recent years due to their potential use in many applications such as border protection and combat field surveillance. Given the criticality of such applications, maintaining a dependable operation of the network is a fundamental objective. However, the resource constrained nature of sensor nodes and the ad-hoc formation of the network, often coupled with an unattended deployment, pose non-conventional challenges and motivate the need for special techniques for dependable design and management of WSN. In this article, we highlight the potential of careful positioning of the base station (BS), which acts as a sink resources.

  • PDF

LEACH Protocol based WSN Protocol using Fuzzy

  • Kwon, Oh Seok;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.59-64
    • /
    • 2017
  • A wireless sensor network is a network in which nodes equipped with sensors capable of collecting data from the real world are configured wirelessly. Because the sensor nodes are configured wirelessly, they have limited power such as batteries. If the battery of the sensor node is exhausted, the node is no longer usable. If more than a certain number of nodes die, the network will not function. There are many wireless sensor network protocols to improve energy efficiency, among which LEACH Protocol is a typical example. The LEACH protocol is a cluster-based protocol that divides sensor space into clusters and transmits and receives data between nodes. Therefore, depending on how the cluster is structured, the shape of the energy cow may decrease or increase. We compare the network lifetimes of the existing LEACH protocols and the three types of protocols that have been improved using fuzzy methods for cluster selection.

Energy Efficiency in Wireless Sensor Networks using Linear-Congruence on LDPC codes (LDPC 코드의 Linear-Congruence를 이용한 WSN 에너지 효율)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.68-73
    • /
    • 2007
  • Recently, WSN(wireless sensor networks) consists of several sensor nodes in sensor field. And each sensors have the enforced energy constraint. Therefore, it is important to manage energy efficiently. In WSN application system, FEC(Forward error correction) increases the energy efficiency and data reliability of the data transmission. LDPC(Low density parity check) code is one of the FEC code. It needs more encoding operation than other FEC code by growing codeword length. But this code can approach the Shannon capacity limit and it is also can be used to increase the data reliability and decrease the transmission energy. In this paper, the author adopt Linear-Congruence method at generating parity check matrix of LDPC(Low density parity check) codes to reduce the complexity of encoding process and to enhance the energy efficiency in the WSN. As a result, the proposed algorithm can increase the encoding energy efficiency and the data reliability.

Lifetime Improvement of WSN by Optimizing Cluster Configuration (클러스터 구성 최적화를 통한 무선 센서 네트워크 수명 개선)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.117-121
    • /
    • 2018
  • A Wireless Sensor Network is a network that is composed of wireless sensor nodes. There is no restriction on the place where it can be installed because it is composed wirelessly. Instead, sensor nodes have limited energy, such as batteries. Therefore, to use the network for a long time, energy consumption should be minimized. Several protocols have been proposed to minimize energy consumption, and the typical protocol is the LEACH protocol. The LEACH protocol is a cluster-based protocol that minimizes energy consumption by dividing the sensor field into clusters. Depending on how you organize the clusters of sensor field, network lifetimes may increase or decrease. In this paper, we will improve the network lifetime by improving the cluster head selection method in LEACH Protocol.

Wireless sensor network protocol comparison for bridge health assessment

  • Kilic, Gokhan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.509-521
    • /
    • 2014
  • In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life, such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.

A Remote Firmware Update Mechanism for a TDMA-based Bidirectional Linear Wireless Sensor Network (양방향 통신을 지원하는 시분할 기반 선형 무선 센서 네트워크를 위한 원격 펌웨어 업데이트 방법)

  • Moon, Jung-Ho;Kim, Dae-Il;Park, Lae-Jeong;Lee, Hyung-Bong;Chung, Tae-Yoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.867-875
    • /
    • 2009
  • A wireless sensor network inherently comprises a plurality of sensor nodes widely deployed for sensing environmental information. To add new functions or to correct some faulty functions of an existing wireless sensor network, the firmware for each sensor node needs to be updated. Firmware update would be quite troublesome if it requires the gathering, reprogramming, and redeploy of all of already deployed sensor nodes. Over-the-air programming (OTA) facilitates the firmware update process, thereby allowing convenient maintenance of an already-deployed sensor network. This paper proposes and implements a remote firmware update mechanism for a TDMA-based wireless sensor network, in which the firmware for sensor nodes constituting the TDMA-based sensor network can be easily updated and the update process can be conveniently monitored from a remote site. We verify the validity of the proposed firmware update method via experiments and introduce three wireless sensor networks installed in outdoor sites in which the proposed firmware update mechanism has been exploited.

An Energy efficient protocol to increase network life in WSN

  • Kshatri, Dinesh Baniya;Lee, WooSuk;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.62-65
    • /
    • 2015
  • Wireless Sensor Network consists of several sensor nodes, these nodes loss some of their energy after the process of communication. So an energy efficient approach is required to improve the life of the network. In case of broadcast network, LEACH protocol uses an aggregative approach by creating cluster of nodes. Now the major concern is to built such clusters over WSN in an optimized way. This work presents the improvement over LEACH protocol. Hence we have different work environments where the network is having different capacities. The proposed work shows how the life time of the network will improve when the number of nodes varies within the network.

WSN-based Coastal Environment Monitoring System Using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 WSN 기반의 연안 환경 모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Chang-Hee;Ock, Young-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • The rapid water pollution in stream, river, lake and sea in recent years raises an urgent need for continuous monitoring and policymaking to conserve the global clean environment. In particular, the increasing water pollution in coastal marine areas adds to the importance of the environmental monitoring systems. In this paper, the mobile server is designed to gathers information of the water quality at coastal areas. The obtained data by the server is transmitted from field servers to the base station via multi-hop communication in wireless sensor network. The information collected includes dissolved oxygen(DO), hydrogen ion exponent(pH), temperature, etc. By the information provided the real-time monitoring of water quality at the coastal marine area. In addition, wireless sensor network-based flooding routing protocol was designed and used to transfer the measured water quality information efficiently. Telosb sensor node is programmed using nesC language in TinyOS platform for small scale wireless sensor network monitoring from a remote server.

A Study on Cluster Head Selection and a Cluster Formation Plan to Prolong the Lifetime of a Wireless Sensor Network

  • Ko, Sung-Won;Cho, Jeong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.62-70
    • /
    • 2015
  • The energy of a sensor in a Wireless Sensor Network (WSN) puts a limit on the lifetime of the network. To prolong the lifetime, a clustering plan is used. Clustering technology gets its energy efficiency through reducing the number of communication occurrences between the sensors and the base station (BS). In the distributed clustering protocol, LEACH-like (Low Energy Adaptive Clustering Hierarchy - like), the number of sensor's cluster head (CH) roles is different depending on the sensor's residual energy, which prolongs the time at which half of nodes die (HNA) and network lifetime. The position of the CH in each cluster tends to be at the center of the side close to BS, which forces cluster members to consume more energy to send data to the CH. In this paper, a protocol, pseudo-LEACH, is proposed, in which a cluster with a CH placed at the center of the cluster is formed. The scheme used allows the network to consume less energy. As a result, the timing of the HNA is extended and the stable network period increases at about 10% as shown by the simulation using MATLAB.