• Title/Summary/Keyword: WSN(Wireless Sensor Network)

Search Result 647, Processing Time 0.032 seconds

A Modified E-LEACH Routing Protocol for Improving the Lifetime of a Wireless Sensor Network

  • Abdurohman, Maman;Supriadi, Yadi;Fahmi, Fitra Zul
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.845-858
    • /
    • 2020
  • This paper proposes a modified end-to-end secure low energy adaptive clustering hierarchy (ME-LEACH) algorithm for enhancing the lifetime of a wireless sensor network (WSN). Energy limitations are a major constraint in WSNs, hence every activity in a WSN must efficiently utilize energy. Several protocols have been introduced to modulate the way a WSN sends and receives information. The end-to-end secure low energy adaptive clustering hierarchy (E-LEACH) protocol is a hierarchical routing protocol algorithm proposed to solve high-energy dissipation problems. Other methods that explore the presence of the most powerful nodes on each cluster as cluster heads (CHs) are the sparsity-aware energy efficient clustering (SEEC) protocol and an energy efficient clustering-based routing protocol that uses an enhanced cluster formation technique accompanied by the fuzzy logic (EERRCUF) method. However, each CH in the E-LEACH method sends data directly to the base station causing high energy consumption. SEEC uses a lot of energy to identify the most powerful sensor nodes, while EERRCUF spends high amounts of energy to determine the super cluster head (SCH). In the proposed method, a CH will search for the nearest CH and use it as the next hop. The formation of CH chains serves as a path to the base station. Experiments were conducted to determine the performance of the ME-LEACH algorithm. The results show that ME-LEACH has a more stable and higher throughput than SEEC and EERRCUF and has a 35.2% better network lifetime than the E-LEACH algorithm.

Routing Protocol using Node Connectivity for Hierarchical Wireless Sensor Network (계층형 무선센서네트워크에서 노드 연결성을 이용한 라우팅 프로토콜)

  • Choi, Hae-Won;Kim, Sang-Jin;Ryoo, Myung-Chun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.269-278
    • /
    • 2010
  • There are tendency that wireless sensor network is one of the important techniques for the future IT industry and thereby application areas in it are getting growing. Researches based on the hierarchical network topology are evaluated in good at energy efficiency in related protocols for wireless sensor network. LEACH is the best well known routing protocol for the hierarchical topology. However, there are problems in the range of message broadcasting, which should be expand into the overall network coverage, in LEACH related protocols. This dissertation proposes a new routing protocol to solve the co-shared problems in the previous protocols. The basic idea of our scheme is using the table for nodes connectivity and node energy information. The results show that the proposed protocol could support the load balancing by distributing the clusters with a reasonable number of member nodes and thereby the network life time would be extended in about 1.8 times longer than LEACH.

태양 에너지 수집형 무선 센서 네트워크의 연구 이슈

  • No, Dong-Geon
    • Information and Communications Magazine
    • /
    • v.29 no.10
    • /
    • pp.74-82
    • /
    • 2012
  • 무선 센서 네트워크(WSN, Wireless Sensor Network)는 최근 주목 받고 있는 가상-물리 시스템 (CPS, Cyber-Physical System)의 입력을 담당하는 부분으로써 CPS를 구성하는 주요한 부분 중 하나이다. 본고에서는 기존의 배터리 기반 WSN의 짧은 수명 및 높은 유지관리 비용을 극복하기 위하여 최근 활발히 연구되고 있는 태양 에너지 기반 무선 센서 네트워크(SP-WSN, Solar-powered WSN)의 연구 동향과 이슈들을 살펴보고자 한다.

Implementation of Real-time Power Facility Monitoring System Using WSN (무선 센서 네트워크 기술을 이용한 전력 설비 실시간 감시 시스템 구현)

  • Kim, Young-Il;Cho, Seon-Ku;Yi, Bong-Jae;Song, Jae-Ju;Shin, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.488-490
    • /
    • 2006
  • In the electric power industry, It is important that the supply of energy must always be guaranteed. To satisfy these requirements, various forms of technologies are needed, such as RFID tag, reader, sensor network, middleware and so on. WSN (Wireless Sensor Network) technologies of the electric power industry are in the early stage and there is no clear guideline for developing electric facility management system using WSN. Relevant experience is limited, the challenge will be to derive requirement from business practice and to determine whether it is possible or not. To explore this issue, we focus on researching and field test of prototype system in Korea Electric Power Corporation (KEPCO). In this paper we describe requirement from power industry. And we introduce design and implementation of the power facility monitoring system.

  • PDF

A study on the Implementation of Wireless Sensor Network for Wireless Home Networking (무선 홈네트웤을 위한 WSN에 관한 연구)

  • Jeon, Dong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1337-1342
    • /
    • 2012
  • In recent years, many researches in Home Networking are being progressed actively. Most of techniques for Home Networking are based on wired but the technique for wireless connection is also needed. This paper focuses on wireless connection in Home Networking. Of many of wireless technologies, such as Wireless LAN, Bluetooth, or HomeRF, we especially propose to apply the new technique called Wireless Sensor Network. We present hardware and protocol stack design consideration for wireless sensor node and wireless sensor network, and then we present how to apply wireless sensor network to Home Networking and how to constitute Wireless Home-Networking with a variety of sensor nodes. Finally, we introduce the wireless sensor node system designed by us and conclude this paper.

Static Worst-Case Energy and Lifetime Estimation of Wireless Sensor Networks

  • Liu, Yu;Zhang, Wei;Akkaya, Kemal
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.128-152
    • /
    • 2010
  • With the advance of computer and communication technologies, wireless sensor networks (WSNs) are increasingly used in many aspects of our daily life. However, since the battery lifetime of WSN nodes is restricted, the WSN lifetime is also limited. Therefore, it is crucial to determine this limited lifetime in advance for preventing service interruptions in critical applications. This paper proposes a feasible static analysis approach to estimating the worstcase lifetime of a WSN. Assuming known routes with a given sensor network topology and SMAC as the underlying MAC protocol, we statically estimate the lifetime of each sensor node with a fixed initial energy budget. These estimations are then compared with the results obtained through simulation which run with the same energy budget on each node. Experimental results of our research on TinyOS applications indicate that our approach can safely and accurately estimate worst-case lifetime of the WSN. To the best of our knowledge, our work is the first one to estimate the worst-case lifetime of WSNs through a static analysis method.

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Development of optical dual-sensors for submersion monitoring using zigbee-based wireless sensor networks (지그비 기반 센서 네트워크를 이용한 침수감지용 광 이중센서 개발)

  • Key, Kwang-Hyun;Kim, Hyung-Pyo;Sohn, Kyung-Rak
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.184-190
    • /
    • 2010
  • In this paper, a remote submersion warning system based on multi-mode optical fiber(MMF) sensors and a wireless sensor network(WSN) are proposed. To improve the reliability and stability of the sensors, the dual optical fiber sensors combined to the optical coupler are demonstrated. A slave zigbee as a wireless sensor module was used as a platform to monitor and record the signal from the MMF sensors and then transmits these information to a master zigbee wirelessly. The monitoring system running the $LabVIEW^{(R)}$ software was connected to the internet to support the short message service(SMS) through extensible markup language(XML) web service. No matter where the managers are, they can always receive the real-time remote-monitoring data for safety check.

Dual Addressing Scheme in IPv6 over IEEE 802.15.4 Wireless Sensor Networks

  • Yang, Soo-Young;Park, Sung-Jin;Lee, Eun-Ju;Ryu, Jae-Hong;Kim, Bong-Soo;Kim, Hyung-Seok
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.674-684
    • /
    • 2008
  • This paper proposes a dual addressing scheme (DAS) for IPv6 over IEEE 802.15.4 wireless sensor networks (WSN). DAS combines a global unicast address to cope with association link changes and node mobility, and it links local addresses to lighten the overhead of the system to save energy and resources. This paper describes DAS address formats, address autoconfiguration, and address translation tables in the gateway. A detailed description of DAS is provided through examples. Simulations are performed to demonstrate the performance improvements of the DAS compared with the IPv6-based WSN, which uses the conventional single address.

  • PDF

Improvement of Cluster-head node's Transmission Method in Cluster-based WSN Protocol (클러스터 기반 WSN 프로토콜에서 클러스터 헤드 노드의 전송 방법 개선)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.87-91
    • /
    • 2019
  • WSN is a wirelessly configured network of sensor nodes with limited power such as batteries. If the sensor node's battery is exhausted, the node is no longer available. Therefore, if the network is to be used for a long time, energy consumption should be minimized. There are many Wireless Sensor Network Protocols to improve energy efficiency, including Cluster-based and chain-based Protocols. Cluster-based Protocols elect Cluster Heads and divide sensor field into Clusters. The Cluster Head collects the data in the Cluster and transmits it to the Base Station. In the case of nodes elected as Cluster Heads, there is a problem of energy consumption. The chain-based Protocol links sensor nodes in a chain and finally transmits all data to the Base Station. In this paper, we intend to increase the network lifetime by using a chain to reduce the energy consumption of the Cluster Head in the Cluster-based Protocol, LEACH Protocol.