• Title/Summary/Keyword: WPT

Search Result 184, Processing Time 0.826 seconds

Analysis of Electromagnetic Wave Exposure Due to 6.78 MHz Wireless Power Transfer System (6.78 MHz 무선전력전송 시스템에 의한 전자파 노출량 분석)

  • Yoon, Seok;Jung, Hyeonjong;Lim, Yeongseog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.954-963
    • /
    • 2017
  • In this paper, we analyzed the electric/magnetic field distribution and SAR distribution in a human body due to the resonant-type wireless power transfer(WPT) system with an operating frequency of 6.78 MHz. To analyze the field distribution under the unperturbed condition, a prototype system was fabricated and the measured results were compared with the simulation results. For safety during measurement, the available power to the transmitter coil is limited to 1 W. To analyze the induced current density and SAR distribution, a simple human model consisting of three layers, skin, fat, and muscle, was used for the simulation. The electromagnetic wave exposure levels obtained through measurement and simulation were compared with the recommended levels by the ICNIRP.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.

Wireless Power Transfer for Electric Vehicles Charging Based on Hybrid Topology Switching With a Single Inverter

  • Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.115-124
    • /
    • 2020
  • In wireless power transfer (WPT) system, the conventional compensation topologies only can provide a constant current (CC) or constant voltage (CV) output under their resonant conditions. It is difficult to meet the CC and CV hybrid charging requirements without any other schemes. In this study, a switching hybrid topology (SHT) is proposed for CC and CV electric vehicle (EV) battery charging. By utilizing an additional capacitor and two AC switches (ACSs), a double-side LCC (DS-LCC) and an inductor and double capacitors-series (LCC-S) topologies are combined. According to the specified CC and CV charging profile, the CC and CV charging modes can be flexibly converted by the two additional ACSs. In addition, zero phase angle (ZPA) also can be achieved in both charging modes. In this method, because the operating frequency is fixed, without using PWM control, and only a small number of devices are added, it has the benefits of low-cost, easy-controllability and high efficiency. A 3.3-kW experimental prototype is configured to verify the proposed switching hybrid charger. The maximum DC efficiencies (at 3.3-kW) of the proposed SHT is 92.58%.

A Study on Fingerprint-Based Coil Alignment Improvement Technique for Magnetic Resonant Wireless Power Transfer System (핑거프린트 방식의 자기 공진형 무선전력전송 코일 정렬 상태 개선 기법 연구)

  • Kim, Sungjae;Lee, Euibum;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This paper proposes fingerprint-based positioning methods which can be used in a magnetic resonant wireless power transfer(WPT) system and verifies their performance. A new receiver coil with small orthogonal auxiliary coils is proposed to measure magnetic field signals in three axial directions. The magnitude and phase characteristics of the three-axis electromotive force can be obtained by using the proposed coil. To predict a position with the measured values, we propose a lookup table-based method and linear discriminant analysis-based method. For verification, the proposed methods are applied to predict 75 positions of the 6.78 MHz WPT system, and the performances such as accuracy and computation time are compared.

The Technical Trend and Future Direction of Wireless Power Transmission (무선전력전송 기술동향과 발전방향)

  • Kim, S.M.;Moon, J.I.;Cho, I.K.;Yoon, J.H.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.3
    • /
    • pp.98-106
    • /
    • 2014
  • 무선전력전송(WPT: Wireless Power Transmission) 기술은 최근 개인 휴대기기에 대한 무선충전과 전기자동차 무선충전을 중심으로 비약적인 발전을 이루고 있는 기술이다. 또한 보다 높은 자유도와 안전성을 부여하기 위해 보다 먼 전송거리를 확보하고 다양한 이종기기에 동시에 전력을 공급할 수 있는 기술을 개발하기 위해 노력하고 있다. 이와 더불어 해당기술에 대한 독립적 지위를 확보하기 위한 다양한 표준화 활동이 동시에 진행되고 있다. 본고에서는 이러한 무선전력전송의 기술발전 동향과 표준화 동향을 소개하고, 향후 무선전력전송 기술의 발전방향에 대해 논하고자 한다.

  • PDF

Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission

  • Dastjerdi, Parinaz Belalpour;Ahmadi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.545-553
    • /
    • 2018
  • Mode II delamination propagation is an important damage mode in laminated composites and this paper aims to investigate the behavior of this damage in laminated composite materials using acoustic emission (AE) technique. Three different lay-ups of glass/epoxy composites were subjected to mode II delamination propagation and generated AE signals were recorded. In order to investigate the propagation of delamination behavior of these specimens, AE signals were analyzed using Wavelet Packet Transforms (WPT) and Fast Fourier Transform (FFT). In addition, conventional AE analyses were used to enhance understanding of the propagation of delamination damage. The results indicate that different fracture mechanisms were the main cause of the AE signals. The dominant mechanisms in all the specimens were matrix cracking, fiber/matrix debonding and fiber breakage, with varying percentage of the damage mechanisms for each lay-up. Scanning Electron Microscopy (SEM) observations were in accordance to the AE results.

Comparison of Characteristics between Magnetic Induction and Magnetic Resonance WPT using K Inverter (K 인버터를 이용한 전자기 유도 방식과 자기 공명 방식의 특성 비교)

  • Kim, Jin-Wook;Son, Hyeon-Chang;Kim, Do-Hyeon;Kim, Kwan-Ho;Park, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.9-10
    • /
    • 2011
  • 본 논문에서는 자기 공명 방식의 무선전력전송과 기존의 전자기 유도 방식의 특성을 회로 해석에 K 인버터를 적용하여 비교하였다. K 인버터가 적용된 등가회로를 이용하여 시스템 효율과 임피던스 매칭 조건, 입 출력 전력 값을 유도하였다. 그 결과 최대 효율이 되는 임피던스 매칭 조건을 만족시키면 전자기 유도 방식과 자기 공명 방식은 서로 같은 효율로 전력전송이 가능하였다. 하지만 자기 공명 방식이 전자기 유도 방식에 비해 임피던스 매칭을 할 수 있는 자유도가 더 크고, 입 출력 전력 제어에 있어서 더 나은 장점을 가지고 있었다.

  • PDF

Review for the Helical coil type and Spiral coil type in a mid range Wireless Power Transfer System (근거리 무선전력전송용 헬리컬 코일과 스파이럴 코일에 대한 고찰)

  • Park, Jae-Hyun;Yang, Hae-Youl;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.11-12
    • /
    • 2011
  • In electromagnetic coupled resonance(ECR) WPT system, the main key for wireless power transmission is the design method of the ECR coils. The ECR coils is classified to the helical coil(3D) type and the spiral coil(2D) type as a coil structure. The pattern of the spiral coil type has been studied in favor of commercialization. In this paper, the design characteristics of the helical coil and the spiral coil is considered using a Vector Network Analyzer. It is analyzed according to the distance of coupling coefficient between the ECR coils. Also, It is analyzed for the relationships such as the maximum transmission efficiency and the resonant frequency depending on the distance between the coils.

  • PDF

Wireless power transfer and IH convergence technology for mid-power inverter system (무선전력전송 및 IH 융합을 위한 중전력 인버터 시스템)

  • Min, Beong-Duk;Song, Doo-Ik;Lee, Jong-Ju;Lee, Do-Kyung;Yoo, Ju-Seung;Lee, Seong-Hun;Yeom, Jung-Seok;Jang, Won-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.50-51
    • /
    • 2014
  • 본 논문에서는 자기유도를 기반으로 하는 중전력 (100W~2.4kW) 무선전력전송(Wireless Power Transfer, WPT) 및 IH(Induction Heating) 융합을 위한 인버터 시스템을 제안한다. 제안하는 시스템은 넓은 출력 전력 범위를 지니며 송수신 코일간의 거리 및 위치 변화 등에 대해 일정한 출력 전력을 제공한다. 중전력에서 고효율, 안정성 및 국내외 규제를 만족하는 시제품을 제작하여 상용화에 대한 가능성 확인을 목표로 한다.

  • PDF

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.