• Title/Summary/Keyword: WPI

Search Result 83, Processing Time 0.018 seconds

Quality Characteristics of Paeksulgi (Korean rice cake) Containing Various Levels of Whey Protein Isolate Powder (WPI 분말을 첨가한 백설기의 품질 특성)

  • Kim, Chan-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.5
    • /
    • pp.561-569
    • /
    • 2009
  • The effects of substituting whey protein isolate (WPI) powder for rice flour during the preparation of paeksulgi (Korean rice cake) were evaluated by objective and subjective tests. Milk whey is drained from milk curd as a by-product of the cheese manufacturing process. Whey protein is known as a good nutritional source and a functional material for many processed foods. WPI contains more than 90% whey protein. The moisture content decreased gradually during storage and the decrease was less in control than WPI powder-substituted groups. The color lightness (L) decreased significantly with increasing WPI powder, wherease the redness (a) and yellowness (b) both increased. Texture analyses revealed that the hardness, chewiness, gumminess, adhesiveness and fracturability of paeksulgitended to increase in proportion to the amount of WPI powder added. Evaluation of the gelatinization of paeksulgi by amylographing revealed that the initial pasting temperature, peak viscosity, hot pasting viscosity and breakdown was lower in samples that contained WPI powder. However, the lowest setback value was observed in the control. The results of the sensory evaluation indicated that paeksulgi prepared with 2% WPI powder had the highest overall acceptability. Taken together, these results suggest that WPI paeksulgi containing 2% WPI powder has the best quality.

The Quality Characteristics of Sponge Cake with Varied Levels of Whey Protein Isolate (Whey Protein Isolate(WPI)의 대체비율을 달리한 스폰지 케이크의 품질 특성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Korean journal of food and cookery science
    • /
    • v.23 no.1 s.97
    • /
    • pp.41-49
    • /
    • 2007
  • The substitution effects of whey protein isolate(WPI) for egg in the preparation of sponge cake were determined by objective and subjective tests. Milk whey is drained from milk curd as a by-product of cheese manufacture. Whey protein is known as a good nutritional source and a functional material for many processed foods, especially baked goods. WPI contains above 90% whey protein. The specific gravity and viscosity of sponge cakes tend to be affected by WPI substitution. The cooking loss of sponge cakes with WPI substituted for egg(abbreviated as WPI cake) during oven baking was smaller than that made with egg(abbreviated as egg cake) and the specific loaf volume of WPI cake was larger than that of egg cake. The number of pores was highly increased and the size of pores was more uniformly and finely distributed in the cross section of WPI cake than those of egg cake, as observed by scanning electron microscopy(SEM). The hardness, gumminess and chewiness of WPI cake made with 10-20% WPI substitution were the lowest among all the tested cakes, including egg cake, thereby confirming the considerable improvement in their cake qualities. By the results of sensory evaluation, appearance, pore uniformity, softness, chewiness, moistness, flavor, mouth feeling, and overall acceptability of 10-20% WPI substitute cakes were evaluated as being significantly superior to those of all other cakes(p<0.05). These results support the better physicochemical characteristics and sensory evaluations of sponge cake prepared with 10-20% of WPI substitution for egg.

Quality Characteristics of Low-Fat Butter Sponge Cakes Prepared with Whey Protein Isolate (Whey protein isolate가 첨가된 저지방 버터 스폰지 케이크의 품질 특성)

  • Kim, Chan-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The effects of substituting whey protein isolate (WPI) for butter in the preparation of butter sponge cake were determined by objective and subjective tests. The specific gravity of cake batter, the cooking loss and moisture content of cake were all decreased with increasing amounts of WPI, whereas specific loaf volume was increased. With increasing WPI content, redness of crust and crumb, as well as lightness of crumb were increased, whereas lightness of crust, as well as yellowness of crust and crumb were all decreased. Hardness, chewiness, gumminess, adhesiveness and fracturability were increased significantly with increasing amounts of WPI, however, cohesiveness, springiness, and resilience were decreased. In the sensory evaluation, 20% WPI-substituted cake displayed scores similar to those of control. These results suggest that substitution of 20% WPI could be the best ratio for the preparation of butter sponge cake.

A Study on the Physicochemical Properties and Antioxidative Activity of Whey Protein Isolate (WPI의 이화학적 특성과 항산화성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.1
    • /
    • pp.97-103
    • /
    • 2007
  • In this study, physicochemical properties and the antioxidative activity of whey protein isolate(WPI) for com germ oil were measured. The pH of WPI was 6.26, and the titrable acidity was 0.18%. The WPI’s moisture content was 5.2% and each of the other element content such as lactose, crude protein, crude ash and crude fat was found to be 0.8%, 90.7%, 2.7% and 0.6%, respectively. The amounts of active SH group in WPI 9 ${\mu}$ M-g and total colony counts of bacteria was 5.9 ${\times}$ 10$^3$ CFU-g. ${\alpha}$-Lactalbumin, ${\beta}$-lactoglobulin and bovine serum albumin(BSA) were shown in WPI as major protein by electrophoresis. The antioxidative effect of WPI and other antioxidants on com germ oil used as substrate was determined by peroxide value(POV) and conjuqated dienoic acid value(CDV). By these results, the order of antioxidative effects could be defined as BHT 0.02%>ascorbic acid 0.1%>WPI 0.1%>WPI 0.02%>ascorbic acid 0.02%>control>tocopherol 0.02%>tocopherol 0.1%, respectively. Also the induction period of com germ oil added with WPI was longer by 1.6 times than that of control(none added any antioxidant). Therefore the fact suggested that WPI could be utilized as a good antioxidative agents.

Physicochemical Properties of Whey Protein Isolate (WPI의 물리화학적 특성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.50-54
    • /
    • 2007
  • In this study, the physicochemical properties of cheese whey protein isolate (WPI) were measured. The total amount of amino acids in WPI was 89.5% and the proportion of essential amino acids was 44.6%. Among these, leucine, lysine, isoleucine, and valine were shown in large amounts. At various pHs, the solubility of WPI (82-88%) was higher than that of sodium caseinate, (5-79%). The solubility of WPI was not affected by variation of pH. It was shown that the emulsifying capacity of WPI was higher than that of egg yolk by 1.6 times, but the stabilities of emulsions made with WPI and egg yolk was almost same each other at 65-97% and 60-89%, respectively. The foaming capacity of WPI was higher than that of egg white, at 323.3% and 186.6%, respectively, but the foam stability of WPI was similar to that of egg white.

Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex

  • Ha, Ho-Kyung;Jeon, Na-Eun;Kim, Jin Wook;Han, Kyoung-Sik;Yun, Sung Seob;Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.267-274
    • /
    • 2016
  • The purposes of this study were to investigate the impacts of concentration levels of whey protein isolate (WPI) and inulin on the formation and physicochemical properties of WPI/inulin nano complexes and to evaluate their potential prebiotic effects. WPI/inulin nano complexes were produced using the internal gelation method. Transmission electron microscopy (TEM) and particle size analyzer were used to assess the morphological and physicochemical characterizations of nano complexes, respectively. The encapsulation efficiency of resveratrol in nano complexes was studied using HPLC while the potential prebiotic effects were investigated by measuring the viability of probiotics. In TEM micrographs, the globular forms of nano complexes in the range of 10 and 100 nm were successfully manufactured. An increase in WPI concentration level from 1 to 3% (w/v) resulted in a significant (p<0.05) decrease in the size of nano complexs while inulin concentration level did not affect the size of nano complexes. The polydispersity index of nano complexes was below 0.3 in all cases while the zeta-potential values in the range of -2 and -12 mV were observed. The encapsulation efficiency of resveratrol was significantly (p<0.05) increased as WPI and inulin concentration levels were increased from 1 to 3% (w/v). During incubation at 37℃ for 24 h, WPI/inulin nano complexes exhibited similar viability of probiotics with free inulin and had significantly (p<0.05) higher viability than negative control. In conclusions, WPI and inulin concentration levels were key factors affecting the physicochemical properties of WPI/inulin nano complexes and had potential prebiotic effect.

Effect of Whey Protein Isolate and Lactobacillus spp. Cell Extracts on Intracellular Antioxidative Activities in Human Prostate Epitherial Cells (유청단백질 및 Lactobacillus spp. 추출물이 전립선 세포 내 항산화 활성에 미치는 영향)

  • 변정열;윤영호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.719-726
    • /
    • 2006
  • Bovine whey protein are rich in cysteine, which is the rate limiting amino acid for synthesis of antioxidant glutathione(GSH). Some strains of Lactobacillus caseihas been reported to contain high level of GSH in cell extracts. The objective ofthis study was to determine whether enzymatically hydrolyzed whey protein isolate(WPI) and cell extract of Lb. casei HY2782 could increase intracellular GSH concentrations and protect against oxidant induced cell death in human prostate epithelial cell line (designated as RWPE1, and PC3MMM2 cells). Treatment of RWPE1 cellsandPC3MMM2 cells with hydrolyzed WPI (500g/ml) significantly increased GSH by28.2% and38.4% respectively. Compared with control cells receiving no hydrolyzed WPI(P<0.05). hydrolyzed WPI and Lb casei HY2782 cell extracts significantly protected RWPE1 and PC3MMM2 cellsfrom oxidant induced cell death compared with controls receiving no WPI. DNA damage associated with oxidant treatment was demonstrated by single cell gel (SCG) electrophoresis.

Preparation and Mechanical Properties of Wheat Protein Isolate Films Cross-linked with Resorcinol

  • Chandrasekhar, M.;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • The purpose of the present work was to preparation and study of full biodegradable Eco-friendly bio-composites by using renewable resources. In this study, wheat protein isolate (WPI) films were formed by cross linking with resorcinol through solution casting method for packaging applications. By varying the resorcinol content (10, 20, 30, 40, and 50 wt %), its effect on mechanical properties of the wheat protein isolate film was measured. The addition of 20% resorcinol led to an overall increase in the tensile strength from 5.2 to 18.6 MPa and modulus increase from 780 to 1132 MPa than WPI films. The % elongation was increased from 2.8 to 9.05 when compared to unmodified WPI film. A thermal phase transition of the prepared WPI was assessed by means of DSC. FTIR is evident that the characteristic WPI spectral IR bands shifted on cross-linking with resorcinol.

Improved Flowability and Wettability of Whey Protein-Fortified Skim Milk Powder via Fluidized Bed Agglomeration

  • Seo, Chan Won
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.915-927
    • /
    • 2022
  • Recently, protein-fortified milk powders are being widely consumed in Korea to prevent sarcopenia, and the demand for high-protein food powders is continuously increasing in the Korean market. However, spray-dried milk proteins have poor flowability and wettability owing to their fine particle sizes and high inter-particle cohesive forces. Fluidized bed agglomeration is widely used to improve the instant properties of food powders. This study investigated the effect of fluidized bed agglomeration on whey protein isolate (WPI)-fortified skim milk powder (SMP) at different SMP/WPI ratios. The fluidized bed process increased the particle size distribution, and agglomerated particles with grape-like structures were observed in the SEM images. As the size increased, the Carr index (CI) and Hausner ratio (HR) values of the agglomerated WPI-fortified SMP particles exhibited excellent flowability (CI: <15) and low cohesiveness (HR: <1.2). In addition, agglomerated WPI-fortified SMP particles exhibited the faster wetting time than the instant criterion (<20 s). As a result, the rheological and physical properties of the WPI-fortified SMP particles were effectively improved by fluidized bed agglomeration. However, the fluidized bed agglomeration process led to a slight change in the color properties. The CIE L* decreased, and the CIE b* increased because of the Maillard reaction. The apparent viscosity (ηa,10) and consistency index (K) values of the rehydrated solutions (60 g/180 mL water) increased with the increasing WPI ratio. These results may be useful for formulating protein-fortified milk powder with better instant properties.

Quality Characterization of Salmon Oil Microencapsulated with Various Wall Materials (다양한 피복물질을 이용한 연어 오일의 미세캡슐화 및 품질 특성)

  • LIM, Hyun-Jung;PARK, Seul-Ki;KIM, Min-Jeong;LEE, Won-Kyung;MIN, Jin-Ki;CHO, Young-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1334-1342
    • /
    • 2015
  • The aim of this study was to investigate the quality characterization of salmon oil microencapsulated with maltodextrin (MD), cyclodextrin (CD), sodium caseinate (SC), arabic gum (AG) and WPI. After spray drying to ambient temperature, the salmon oil powders were packed (single package) and placed at room temperature ($25^{\circ}C$) for 30 day. The quality characterization of salmon oil powder including total oil (%), extractable oil (%), encapsulation efficiency (%), fatty acid, SEM, pH, acid value (AV), peroxide value(POV) were investigated. Salmon oil was microencapsulated with a high power yield (> 80%); including the formulation MD/SC and MD/SC/WPI. The microencapsules of MD/SC/WPI presented spherical shapes, smooth texture and non-porous surfaces. The pH of MD/SC/WPI varied from 6.11 to 5.99 (p>0.05). The AV of MD/SC/WPI varied from 4.74 to 4.61 (p>0.05). The pH and AV were not significantly different. The POV of MD/SC/WPI increased with storage day (p<0.05). It was concluded that MD/SC/WPI could delay lipid oxidation and high yield (82.55%) of salmon oil powder.